cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121014 Nonprime terms in A121912.

Original entry on oeis.org

1, 6, 9, 10, 15, 18, 30, 33, 45, 55, 90, 91, 99, 165, 246, 259, 370, 385, 451, 481, 495, 505, 561, 657, 703, 715, 909, 1035, 1045, 1105, 1233, 1626, 1729, 2035, 2409, 2465, 2821, 2981, 3333, 3367, 3585, 4005, 4141, 4187, 4521, 4545, 5005, 5461, 6533, 6541
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2006

Keywords

Comments

Theorem: If both numbers q and 2q-1 are primes (q is in the sequence A005382) and n=q*(2q-1) then 10^n == 10 (mod n) (n is in the sequence A121014) iff q<5 or mod(q, 20) is in the set {1, 7, 19}. 6,15,91,703,12403,38503,79003,188191,269011,... are such terms. A005939 is a subsequence of this sequence. - Farideh Firoozbakht, Sep 15 2006

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], ! PrimeQ[ # ] && PowerMod[10, #, # ] == Mod[10, # ] &] (* Ray Chandler, Sep 06 2006 *)
  • PARI
    for(n=1,7000,if(!isprime(n),k=10^n;if((k-10)%n==0,print1(n,",")))) \\ Klaus Brockhaus, Sep 06 2006

Formula

Theorem: If both numbers q and 2q-1 are primes and n=q*(2q-1) then 10^n == 10 (mod n) (n is in the sequence) iff q<5 or mod(q, 20) is in the set {1, 7, 19}. - Farideh Firoozbakht, Sep 11 2006

Extensions

Extended by Ray Chandler and Klaus Brockhaus, Sep 06 2006