A121015 Numbers n such that partition number p(n) == 14 (mod n).
1, 2, 8, 1402, 3579, 4111, 5289, 6383, 6467, 15146, 32141, 41910, 82849, 110088, 127531, 185114, 1320338, 1467242, 5739729, 22507473, 32494198
Offset: 1
Examples
Partition number of 8 is 22 = 1*8 + 14, hence 8 is a term. Partition number of 1402 is 52435757789401123913939450130086135644 = 37400683159344596229628709079947315*1402 + 14, hence 1402 is a term.
Programs
-
Mathematica
Do[ If[ Mod[ PartitionsP@n - 14, n] == 0, Print@n], {n, 731000}] (* Robert G. Wilson v, Sep 14 2006 *)
-
PARI
for(n=1,200000,if((numbpart(n)-14)%n==0,print1(n,","))) \\ Klaus Brockhaus, Sep 07 2006
Extensions
Edited, corrected and extended (a(1) to a(3), a(11) to a(16)) by Klaus Brockhaus, Sep 07 2006
Rechecked by Klaus Brockhaus, Mar 17 2007
a(17)-a(19) from Ryan Propper, Mar 17 2007
a(20) from Max Alekseyev, Dec 28 2011
a(21) from Max Alekseyev, Jan 15 2013
Comments