cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121104 a(n) = Fibonacci(n - 1) modulo the n-th prime number.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 5, 24, 15, 21, 18, 1, 27, 43, 11, 38, 63, 49, 44, 32, 88, 2, 83, 59, 73, 76, 79, 63, 113, 9, 94, 61, 6, 123, 76, 149, 127, 34, 74, 124, 32, 83, 1, 3, 91, 212, 204, 232, 85, 76, 171, 141, 148, 234, 145, 38, 2, 271, 208, 179, 194, 73, 14, 127, 177
Offset: 2

Views

Author

Gil Broussard, Aug 12 2006

Keywords

Examples

			a(10)=5 because the 9th Fibonacci=34, the 10th Prime=29, and 34 mod 29=5.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n-1) mod NthPrime(n): n in [2..70]]; // Vincenzo Librandi, Jun 19 2017
  • Mathematica
    With[{nn=70},Mod[First[#],Last[#]]&/@Thread[{Fibonacci[Range[nn-1]], Prime[ Range[2,nn]]}]] (* Harvey P. Dale, Feb 27 2013 *)
    Table[Mod[Fibonacci[n - 1], Prime[n]], {n, 2, 70}] (* Vincenzo Librandi, Jun 19 2017 *)
  • PARI
    a(n) = fibonacci(n-1) % prime(n); \\ Michel Marcus, Jun 18 2017
    
  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    a(n)=lift(fibmod(n-1,prime(n))) \\ Charles R Greathouse IV, Jun 19 2017
    

Formula

a(n) = Fibonacci(n - 1) modulo Prime(n).