A121173 Sequence S with property that for n in S, a(n) = a(1) + a(2) +...+ a(n-1) and for n not in S, a(n) = n+1.
2, 2, 4, 8, 6, 22, 8, 52, 10, 114, 12, 240, 14, 494, 16, 1004, 18, 2026, 20, 4072, 22, 8166, 24, 16356, 26, 32738, 28, 65504, 30, 131038, 32, 262108, 34, 524250, 36, 1048536, 38, 2097110, 40, 4194260, 42, 8388562, 44, 16777168, 46, 33554382
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a121173 n = a121173_list !! (n-1) a121173_list = f 1 [] where f x ys = y : f (x + 1) (y : ys) where y = if x `elem` ys then sum ys else x + 1 -- Reinhard Zumkeller, Nov 06 2013
-
Mathematica
s={2};Do[If[MemberQ[s,n],m=Total[s],m=n+1];AppendTo[s,m],{n,2,46}];s (* James C. McMahon, Oct 13 2024 *)
-
Python
from itertools import count, islice def agen(): # generator of terms S, s, an = {2}, 2, 2 for n in count(2): yield an an = s if n in S else n+1 s += an S.add(an) print(list(islice(agen(), 50))) # Michael S. Branicky, Oct 13 2024
Formula
a(2*n) = A145654(n+1). - Reinhard Zumkeller, Nov 06 2013
a(2*n+1) = 2*n+2.
From Colin Barker, Jan 30 2016: (Start)
a(n) = 2*(2^(n/2+1)-2)-n for n even.
a(n) = n+1 for n odd.
a(n) = -a(n-1)+3*a(n-2)+3*a(n-3)-2*a(n-4)-2*a(n-5) for n>5.
G.f.: 2*x*(1+2*x) / ((1-x)*(1+x)^2*(1-2*x^2)). (End)
E.g.f.: (x - 4)*cosh(x) + 4*cosh(sqrt(2)*x) + (1 - x)*sinh(x). - Stefano Spezia, Oct 14 2024
Comments