cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121343 a(n) = Fibonacci(n) mod n(n+1)/2.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 13, 21, 34, 0, 23, 66, 51, 62, 10, 35, 67, 19, 1, 45, 89, 1, 229, 168, 275, 298, 236, 319, 59, 155, 125, 309, 376, 407, 485, 630, 628, 419, 466, 615, 370, 517, 343, 663, 830, 988, 1033, 168, 624, 700, 746, 1167, 158, 872, 1105, 609, 610, 59, 1181, 0, 1, 125
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2006

Keywords

Examples

			a(11)=23 since Fib(11)=89==23(mod (11*12/2)).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local r, M, p, m; r, M, p, m:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n, n*(n+1)/2;
          do if irem(p, 2, 'p')=1 then r:= r.M mod m fi;
             if p=0 then break fi; M:= M.M mod m
          od; r[1, 2]
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 26 2016
  • Mathematica
    f[n_] := If[n == 0, 0, Mod[Fibonacci@n, n(n + 1)/2]]; f /@ Range[0, 62] (* Robert G. Wilson v, Aug 31 2006 *)
    Join[{0},Mod[First[#],Last[#]]&/@With[{nn=70},Thread[{Fibonacci[ Range[ nn]], Accumulate[Range[nn]]}]]] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    a(n)=lift(fibmod(n,n*(n+1)/2)) \\ Charles R Greathouse IV, Jun 20 2017

Formula

A000045(n) modulo A000217(n).

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar