cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A121874 Numbers n such that Fibonacci(n) == 0 (mod triangular(n)).

Original entry on oeis.org

1, 10, 60, 108, 180, 240, 250, 540, 600, 660, 768, 1008, 1200, 1320, 1620, 1800, 1860, 2160, 2520, 2688, 2736, 3000, 3060, 3300, 3360, 3528, 3888, 4200, 4800, 4860, 4968, 5050, 5280, 5520, 5580, 5880, 6120, 6480, 6600, 6720, 6840, 7320, 7560, 7680, 8100
Offset: 1

Views

Author

Robert G. Wilson v, Aug 31 2006

Keywords

Comments

Zero terms of A121343.

Crossrefs

Programs

  • GAP
    Filtered([1..8250], n-> (Fibonacci(n) mod Binomial(n+1,2))=0 ); # G. C. Greubel, Oct 08 2019
  • Magma
    [n: n in [1..8250] | Fibonacci(n) mod Binomial(n+1,2) eq 0]; // G. C. Greubel, Oct 08 2019
    
  • Mathematica
    Select[Range@10000, Mod[Fibonacci@#, #(# + 1)/2] == 0 &]
  • PARI
    for(n=1, 8250, if(Mod(fibonacci(n), binomial(n+1,2))==0, print1(n", "))) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [n for n in (1..8500) if Mod(fibonacci(n), binomial(n+1,2))==0] # G. C. Greubel, Oct 08 2019
    

Formula

Numbers n where A000045(n) == 0 (mod A000217(n)).

A217737 a(n) = Fibonacci(n) mod n*(n+1).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 51, 167, 130, 171, 67, 190, 1, 45, 320, 1, 505, 168, 275, 649, 614, 319, 59, 620, 125, 837, 376, 407, 485, 1296, 1331, 419, 466, 1435, 1231, 1420, 1289, 1653, 830, 2069, 2161, 1344, 1849, 1975, 746, 1167, 1589, 872, 2645, 2205
Offset: 1

Views

Author

Alex Ratushnyak, Mar 22 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) local r, M, p, m; r, M, p, m:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n, n*(n+1);
          do if irem(p, 2, 'p')=1 then r:= r.M mod m fi;
             if p=0 then break fi; M:= M.M mod m
          od; r[1, 2]
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 26 2016
  • Mathematica
    Table[Mod[Fibonacci[n],n(n+1)],{n,60}] (* Harvey P. Dale, Oct 02 2017 *)
  • PARI
    a(n)=fibonacci(n)%(n*(n+1)) \\ Charles R Greathouse IV, Jun 23 2017
  • Python
    prpr, prev = 0, 1
    for i in range(1, 333):
        cur = prpr + prev
        print(str(prev % (i*(i+1))), end=', ')
        prpr, prev = prev, cur
    

Formula

A000045(n) modulo A002378(n).

A294369 Indices of Fibonacci numbers (A000045) that are triangular numbers (A000217).

Original entry on oeis.org

0, 1, 2, 4, 8, 10
Offset: 1

Views

Author

Alex Ratushnyak, Jan 24 2018

Keywords

Comments

The sequence of Fibonacci numbers that are also triangular numbers begins: 0, 1, 1, 3, 21, 55. That is, 0 and 1 followed by A039595.

Examples

			Fibonacci(10)=55 is a triangular number, therefore 10 is in the sequence.
		

Crossrefs

Showing 1-3 of 3 results.