A121356 Number of transitive PSL_2(ZZ) actions on a finite dotted and labeled set of size n.
1, 2, 24, 192, 600, 15840, 211680, 1612800, 43545600, 961632000, 11416204800, 365957222400, 10766518963200, 191617884057600, 6758061133824000, 254086360399872000, 6058779650187264000, 241382293453357056000
Offset: 1
Keywords
Links
- S. A. Vidal, Sur la Classification et le Dénombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison, (in French), arXiv:math/0702223 [math.CO], 2006.
Crossrefs
Programs
-
Maple
N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n!*n,n=1..N),t, ascending);
-
Mathematica
m = 18; s2 = Exp[t + t^2/2] + O[t]^(m+1) // Normal; s3 = Exp[t + t^3/3] + O[t]^(m+1) // Normal; s = Sum[s2[[n+1]] s3[[n+1]]/(t^n/n!), {n, 0, m}]; CoefficientList[Log[s] + O[t]^(m+1), t] Range[0, m]! Range[0, m] // Rest (* Jean-François Alcover, Sep 02 2018, from Maple *)
-
PARI
N=18; x='x+O('x^(N+1)); A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3))); A121355_ser = serlaplace(log(serconvol(A121357_ser, exp(x)))); Vec(x*A121355_ser') \\ Gheorghe Coserea, May 10 2017
Comments