cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121356 Number of transitive PSL_2(ZZ) actions on a finite dotted and labeled set of size n.

Original entry on oeis.org

1, 2, 24, 192, 600, 15840, 211680, 1612800, 43545600, 961632000, 11416204800, 365957222400, 10766518963200, 191617884057600, 6758061133824000, 254086360399872000, 6058779650187264000, 241382293453357056000
Offset: 1

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

"Dotted" means having a distinguished element. - N. J. A. Sloane, Feb 06 2012
Equivalently, the number of different connected, dotted and labeled trivalent diagrams of size n.

Crossrefs

Labeled version of A005133.
Labeled and dotted version of A121350.
Dotted version of A121355.
Connected and dotted version of A121357.
Connected, labeled and dotted version of A121352.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n!*n,n=1..N),t, ascending);
  • Mathematica
    m = 18;
    s2 = Exp[t + t^2/2] + O[t]^(m+1) // Normal;
    s3 = Exp[t + t^3/3] + O[t]^(m+1) // Normal;
    s = Sum[s2[[n+1]] s3[[n+1]]/(t^n/n!), {n, 0, m}];
    CoefficientList[Log[s] + O[t]^(m+1), t] Range[0, m]! Range[0, m] // Rest (* Jean-François Alcover, Sep 02 2018, from Maple *)
  • PARI
    N=18; x='x+O('x^(N+1));
    A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
    A121355_ser = serlaplace(log(serconvol(A121357_ser, exp(x))));
    Vec(x*A121355_ser') \\ Gheorghe Coserea, May 10 2017

Formula

a(n) = A121355(n)*n.
If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = z d/dz B(z) (Euler operator).