cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121357 Number of different, not necessarily connected, labeled trivalent diagrams of size n.

Original entry on oeis.org

1, 1, 2, 12, 90, 546, 6156, 81432, 942012, 15114780, 294765336, 5069224656, 108842183352, 2770895886552, 64609245619920, 1742542175582496, 55074355772360976, 1626315165597840912, 53331321825434963232
Offset: 0

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of PSL_2(ZZ) actions on a finite labeled set of size n.
Also the number of (r,s) pair of permutations in S_n for which r is involutive, i.e., r^2 = id and s is of weak order three, i.e., s^3 = id.

Crossrefs

Unconnected version of A121355.
Labeled version of A121352.
Labeled, unconnected version of A121350.
Cf. also A005133, A121356.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : sort(add(op(n+1,exs23)*n!,n=0..N),t, ascending);
  • Mathematica
    m = 18; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; CoefficientList[ Sum[exs23[[n + 1]]*n!, {n, 0, m}], t] (* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)
  • PARI
    N=19; x='x+O('x^N);
    Vec(serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)))) \\ Gheorghe Coserea, May 10 2017

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = exp(B(z)).
Six-term linear recurrence: (n^3 + 12*n^2 + 47*n + 61)*a(n + 6) = (29040 + 239224*n^2 + 127628*n + 20715*n^6 + 252267*n^3 + 166304*n^4 + 71889*n^5 + 33*n^9 + 3943*n^7 + 476*n^8 + n^10)*a(n) + (441*n^4 + 3*n^6 + 2160 + 57*n^5 + 4572*n + 3948*n^2 + 1779*n^3)*a(n + 1) + (34920 + 61314*n + 45886*n^2 + 18989*n^3 + 4697*n^4 + 695*n^5 + 57*n^6 + 2*n^7)*a(n + 2) + (19640 + 79*n^5 + 3*n^6 + 861*n^4 + 27598*n + 16084*n^2 + 4975*n^3)*a(n + 3) + (17*n^3 + 425 + n^4 + 350*n + 113*n^2)*a(n + 4) + (1 + 20*n + 9*n^2 + n^3)*a(n + 5) with n = 0, 1, ...
a(n) = A000085(n) * A001470(n). - Mark van Hoeij, May 13 2013