A121357 Number of different, not necessarily connected, labeled trivalent diagrams of size n.
1, 1, 2, 12, 90, 546, 6156, 81432, 942012, 15114780, 294765336, 5069224656, 108842183352, 2770895886552, 64609245619920, 1742542175582496, 55074355772360976, 1626315165597840912, 53331321825434963232
Offset: 0
Keywords
Links
- S. A. Vidal, Sur la Classification et le Denombrement des Sous-groupes du Groupe Modulaire et de leurs Classes de Conjugaison, (in French), arXiv:math/0702223 [math.CO] 2006.
Crossrefs
Programs
-
Maple
N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : sort(add(op(n+1,exs23)*n!,n=0..N),t, ascending);
-
Mathematica
m = 18; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; CoefficientList[ Sum[exs23[[n + 1]]*n!, {n, 0, m}], t] (* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)
-
PARI
N=19; x='x+O('x^N); Vec(serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)))) \\ Gheorghe Coserea, May 10 2017
Formula
If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = exp(B(z)).
Six-term linear recurrence: (n^3 + 12*n^2 + 47*n + 61)*a(n + 6) = (29040 + 239224*n^2 + 127628*n + 20715*n^6 + 252267*n^3 + 166304*n^4 + 71889*n^5 + 33*n^9 + 3943*n^7 + 476*n^8 + n^10)*a(n) + (441*n^4 + 3*n^6 + 2160 + 57*n^5 + 4572*n + 3948*n^2 + 1779*n^3)*a(n + 1) + (34920 + 61314*n + 45886*n^2 + 18989*n^3 + 4697*n^4 + 695*n^5 + 57*n^6 + 2*n^7)*a(n + 2) + (19640 + 79*n^5 + 3*n^6 + 861*n^4 + 27598*n + 16084*n^2 + 4975*n^3)*a(n + 3) + (17*n^3 + 425 + n^4 + 350*n + 113*n^2)*a(n + 4) + (1 + 20*n + 9*n^2 + n^3)*a(n + 5) with n = 0, 1, ...
Comments