A121440 Matrix inverse of triangle A121335, where A121335(n,k) = C( n*(n+1)/2 + n-k + 1, n-k) for n>=k>=0.
1, -3, 1, 0, -5, 1, -12, 4, -8, 1, -129, -22, 18, -12, 1, -1785, -238, -51, 51, -17, 1, -30291, -3634, -345, -161, 115, -23, 1, -608565, -66750, -6111, -285, -505, 225, -30, 1, -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1, -370746528, -35129022, -2818543, -196037, -14335, 4841, -3337, 658
Offset: 0
Examples
Triangle, A121335^-1, begins: 1; -3, 1; 0, -5, 1; -12, 4, -8, 1; -129, -22, 18, -12, 1; -1785, -238, -51, 51, -17, 1; -30291, -3634, -345, -161, 115, -23, 1; -608565, -66750, -6111, -285, -505, 225, -30, 1; -14112744, -1432296, -122227, -9177, 665, -1387, 399, -38, 1; ... Triangle A121412 begins: 1; 1, 1; 3, 1, 1; 18, 4, 1, 1; 170, 30, 5, 1, 1; ... Row 3 of A121335^-1 equals row 3 of A121412^(-8), which begins: 1; -8, 1; 12, -8, 1; -12, 4, -8, 1; ... Row 4 of A121335^-1 equals row 4 of A121412^(-12), which begins: 1; -12, 1; 42, -12, 1; -34, 30, -12, 1; -129, -22, 18, -12, 1; ...
Crossrefs
Programs
-
PARI
/* Matrix Inverse of A121335 */ {T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(r*(r-1)/2+r-c+1,r-c)))); return((M^-1)[n+1,k+1])}
Comments