cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121442 Expansion of (1-x^2)/(1-x-9*x^2+x^3).

Original entry on oeis.org

1, 1, 9, 17, 97, 241, 1097, 3169, 12801, 40225, 152265, 501489, 1831649, 6192785, 22176137, 76079553, 269472001, 932011841, 3281180297, 11399814865, 39998425697, 139315579185, 487901595593, 1701743382561, 5953542163713, 20781331011169, 72661467102025
Offset: 0

Views

Author

Philippe Deléham, Sep 06 2006

Keywords

Comments

From Roman Witula, Aug 08 2012: (Start)
We have a(n)=A(n;2), where A(n;2), B(n;2) and C(n;2) are the special cases of so-called quasi-Fibonacci numbers A(n;d), B(n;d), and C(n;d) for the value of argument d=2 - for details see Witula's comments to A121449 or the paper of Witula-Slota-Warzynski's. The sequences A(n;2), B(n;2) and C(n;2) are defined by the following system of recurrence equations:
A(0;2)=1, B(0;2)=C(0;2)=0,
A(n+1;2)=A(n;2)+4*B(n;2)-2*C(n;2), B(n+1;2)=2*A(n;2)+B(n;2), and C(n+1;2)=2*B(n;2)-C(n;2).
We note that A(n;1)=A077998(n), B(n;1)=A006054(n+1), and C(n;1)=A006054(n). We know (see formulas (3.61-63) in Witula et al.'s paper) that the sequences: (-2)^(-n)*(A(n;1)*(A(n;2)-C(n;2))-B(n;1)*(B(n;2)+C(n;2))+C(n;1)*B(n;2)), (-2)^(-n)*(-A(n;1)*C(n;2)+B(n;1)*(A(n;2)-C(n;2))-C(n;1)*(B(n;2)-C(n;2))), and (-2)^(-n)*(A(n;1)*(B(n;2)-C(n;2))-B(n;1)*B(n;2)+C(n;1)*(A(n;2)-B(n;2)+C(n;2))) are the binomial transforms of the sequences (-2)^(-n)*A(n;1), (-2)^(-n)*B(n;1), and (-2)^(-n)*C(n;1) respectively. Moreover the elements of the sequences A(n;1/2)=2^(-n)*A052975, B(n;1/2)=2^(-n)*A094789, and C(n;1/2) could be described by certain convolutions type identities for the elements of A(n;2), B(n;2), and C(n;2) (see identities (3.58-60) in Witula et al.'s paper). (End)

Crossrefs

Programs

  • Magma
    I:=[1,1,9]; [n le 3 select I[n] else Self(n-1)+9*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{1,9,-1},{1,1,9},50] (* Roman Witula, Aug 08 2012 *)
    CoefficientList[Series[(1 - x^2)/(1 - x - 9 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    Vec((1-x^2)/(1-x-9*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(0)=a(1)=1, a(2)=9, a(n+1) = a(n)+9*a(n-1)-a(n-2) for n>=2.
7*a(n) = (2-c(4))*(1-2*c(1))^n + (2-c(1))*(1-2*c(2))^n + (2-c(2))*(1-2*c(4))^n = (s(2))^2*(1-2*c(1))^n + (s(4))^2*(1-2*c(2))^n + (s(1))^2*(1-2*c(4))^n, where c(j):=2*Cos(2Pi*j/7) and s(j):=2*Sin(2Pi*j/7) - it is the special case, for d=2, of the Binet's formula for the respective quasi-Fibonacci number A(n;d) discussed in Witula-Slota-Warzynski's paper (see also A121449). - Roman Witula, Aug 08 2012

Extensions

Corrected by T. D. Noe, Oct 25 2006
More terms from Vincenzo Librandi, Sep 18 2015