cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121443 Sum of divisors d of n which are odd and n/d is not divisible by 3.

Original entry on oeis.org

1, 1, 3, 1, 6, 3, 8, 1, 9, 6, 12, 3, 14, 8, 18, 1, 18, 9, 20, 6, 24, 12, 24, 3, 31, 14, 27, 8, 30, 18, 32, 1, 36, 18, 48, 9, 38, 20, 42, 6, 42, 24, 44, 12, 54, 24, 48, 3, 57, 31, 54, 14, 54, 27, 72, 8, 60, 30, 60, 18, 62, 32, 72, 1, 84, 36, 68, 18, 72, 48, 72, 9, 74, 38, 93, 20, 96, 42
Offset: 1

Views

Author

Michael Somos, Jul 30 2006, Apr 18 2007

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + q^2 + 3*q^3 + q^4 + 6*q^5 + 3*q^6 + 8*q^7 + q^8 + 9*q^9 + 6*q^10 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 86, Eq. (33.124).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 2), 80); A[2] + A[3]; /* Michael Somos, Jun 12 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d Mod[ d, 2] Boole[ Mod[ n/d, 3] > 0], {d, Divisors @n}]]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3] QPochhammer[ q^6])^3 / (QPochhammer[ q] QPochhammer[ q^2]), {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    f[p_, e_] := Which[p == 2, 1, p == 3, p^e, p > 3, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 12 2020 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, (d%2) * (n/d%3 > 0) * d))};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A)), n))};
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=80) . basis(); A[1] + A[2]; # Michael Somos, Jun 12 2014
    

Formula

Expansion of c(q) * c(q^2) / 9 where c(q) is a cubic AGM theta function.
Euler transform of period 6 sequence [ 1, 2, -2, 2, 1, -4, ...].
Expansion of (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2)) in powers of q.
Multiplicative with a(2^e) = 1, a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^4 - u*w * (u-2*v) * (v-2*w).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 + 2*u2^3*u3 + 3*u2^2*u3^2 + 6*u1*u2*u3*u6 + 48*u2^2*u6^2 - 3*u1^2*u2*u6 - 3*u1*u2*u3^2 - 24*u2^2*u3*u6 - 30*u1*u2*u6^2. - Michael Somos, Apr 18 2007
G.f.: x * Product_{k>0} ((1 - x^(3*k)) * (1 - x^(6*k)))^3 / ((1 - x^k) * (1 - x^(2*k))) = Sum_{k>0} k * x^k * (1 - x^k) / (1 + x^(3*k)).
a(2*n) = a(n), a(2*n + 1) = A185717(n). a(3*n) = 3*a(n). a(6*n + 5) = 6 * A098098(n).
G.f.: Sum_{n = -inf..inf} (-1)^n*x^(3*n+1)/(1 - x^(3*n+1))^2. Cf. A124340. - Peter Bala, Jan 06 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/27 = 0.3655409... (A291050). - Amiram Eldar, Nov 17 2022
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)-3^(-s)+2^(1-s)*3^(-s)). - Amiram Eldar, Jan 03 2023