A121458 Expansion of (1+x-2*x^2)/(1-21*x^2-7*x^3).
1, 1, 19, 28, 406, 721, 8722, 17983, 188209, 438697, 4078270, 10530100, 88714549, 249679990, 1936716229, 5864281633, 42418800739, 136706927896, 931844786950, 3167777090989, 20525689021222, 73046232419419, 453213909082585
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0, 21, 7).
Programs
-
Mathematica
CoefficientList[Series[(1 + x - 2*x^2)/(1 - 21*x^2 - 7*x^3), {x, 0, 200}], x] (* Stefan Steinerberger, Sep 11 2006 *) LinearRecurrence[{0,21,7},{1,1,19},30] (* Harvey P. Dale, May 19 2012 *)
-
PARI
Vec((1+x-2*x^2)/(1-21*x^2-7*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Formula
a(0)=a(1)=1, a(2)=19, a(n+1) = 21*a(n-1)+7*a(n-2) for n>=2.
a(n) = (1/7)*((s(2))^2*(1+3*c(1))^n + (s(4))^2*(1+3*c(2))^n + (s(1))^2*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7) (for the proof see Witula-Slota-Warzynski paper). - Roman Witula, Aug 11 2012
Extensions
More terms from Stefan Steinerberger, Sep 11 2006
Comments