cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A167236 Larger prime power associated with gaps in A121492.

Original entry on oeis.org

2, 7, 16, 23, 37, 59, 97, 149, 211, 307, 907, 1151, 1361, 5623, 8501, 9587, 15727, 19661, 31469, 156007, 360749, 370373, 492227, 1349651, 1357333, 2010881, 4652507, 17051887, 20831533, 47326913, 122164969, 189695893, 191913031, 387096383, 436273291, 1294268779
Offset: 1

Views

Author

Michael B. Porter, Nov 01 2009, Nov 03 2009

Keywords

Examples

			59 is in the sequence since 53 and 59 are consecutive prime powers with a difference of 6 and no smaller pair of consecutive prime powers differ by 6 or more.
		

Crossrefs

Size of gap: A121492
Smaller prime power (start of gap): A002540
Gaps between prime powers: A057820
List of prime powers: A000961

Programs

  • PARI
    isA000961(n) = (omega(n) == 1 || n == 1)
    d_max=0;n_prev=1;for(n=2,1e6,if(isA000961(n),d=n-n_prev;if(d>d_max,print(n);d_max=d);n_prev=n))

Extensions

a(34) onwards from Jan Kristian Haugland, Oct 18 2024

A121493 Start of the smallest m-string of equal entries in A003418(n)=lcm(1,2,...,n), where m=A121492.

Original entry on oeis.org

2, 60, 360360, 232792560, 144403552893600, 164249358725037825439200, 71876675494548945530447225706507529440, 33312720618553145840562713089120360606823375590405920630576000
Offset: 1

Views

Author

Lekraj Beedassy, Aug 03 2006

Keywords

Crossrefs

Cf. A002540.

A002540 Increasing gaps between prime-powers.

Original entry on oeis.org

1, 5, 13, 19, 32, 53, 89, 139, 199, 293, 887, 1129, 1331, 5591, 8467, 9551, 15683, 19609, 31397, 155921, 360653, 370261, 492113, 1349533, 1357201, 2010733, 4652353, 17051707, 20831323, 47326693, 122164747, 189695659, 191912783, 387096133, 436273009, 1294268491
Offset: 1

Views

Author

Keywords

Comments

List of prime-powers where A057820 increases.
The entry K=a(k) is the start of the smallest chain of m=A121492(k) consecutive numbers such that lcm(1,2,...,K) = lcm(1,2,...,K,K+1) = lcm(1,2,...,K,K+1,K+2) = ... = lcm(1,2,...,K,...,K+m-1). See A121493. - Lekraj Beedassy, Aug 03 2006

References

  • J. P. Gram, Undersoegelser angaaende maengden af primtal under en given graense, Det Kongelige Danskevidenskabernes Selskabs Skrifter, series 6, vol. 2 (1884), 183-288; see p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000961 (prime-powers), A057820 (gaps), A002386 (prime equivalent), A094158, A121493.

Programs

  • Mathematica
    s = {}; gap = 0; p1 = 1; Do[If[PrimePowerQ[p2], If[(d = p2 - p1) > gap, gap = d; AppendTo[s, p1]]; p1 = p2], {p2, 2, 10^6}]; s (* Amiram Eldar, Dec 12 2022 *)
    Join[{1},Rest[Module[{nn=5*10^6,pps},pps=Select[Range[nn],PrimePowerQ]; DeleteDuplicates[ Thread[{Most[ pps],Differences[ pps]}],GreaterEqual[ #1[[2]],#2[[2]]]&]][[;;,1]]]] (* The program generates the first 27 terms of the sequence. *) (* Harvey P. Dale, Aug 20 2024 *)
  • PARI
    /* calculates smaller terms - see Donovan Johnson link for larger terms */
    isA000961(n) = (omega(n) == 1 || n == 1)
    d_max=0;n_prev=1;for(n=2,1e6,if(isA000961(n),d=n-n_prev;if(d>d_max,print(n_prev);d_max=d);n_prev=n)) \\ Michael B. Porter, Oct 31 2009

Extensions

Second term corrected by Donovan Johnson, Nov 13 2008 (cf. A094158)
a(28)-a(79) from Donovan Johnson, Nov 14 2008

A167186 Record gaps between nonprime prime powers.

Original entry on oeis.org

3, 4, 7, 9, 17, 40, 41, 74, 151, 307, 312, 408, 424, 912, 1032, 1217, 1872, 2518, 3713, 4920, 5208, 8400, 8520, 8892, 9297, 12840, 16008, 21840, 24360, 35880, 38808, 80760, 102168, 129480, 167160, 183960, 201072, 258720, 290760, 301242, 358848, 375468, 415920
Offset: 1

Views

Author

Michael B. Porter, Oct 29 2009, Oct 31 2009, Nov 03 2009

Keywords

Examples

			17 is in the sequence since A025475(9) - A025475(8) = 49 - 32 = 17, and no previous gap is larger.
A025475(10) - A025475(9) = 64 - 49 = 15, but the previous gap is larger, so 15 is not in the sequence.
		

Crossrefs

List of nonprime prime powers: A025475.
Gaps between nonprime prime powers: A053707.
Record gaps between prime powers including primes: A121492.

Programs

  • Mathematica
    Join[{3},DeleteDuplicates[Differences[Select[Range[10^6],PrimePowerQ[#] && !PrimeQ[ #]&]], GreaterEqual]] (* Harvey P. Dale, Feb 28 2023 *)
  • PARI
    isA025475(n) = (omega(n) == 1 & !isprime(n)) || (n == 1)
    d_max=0;n_prev=1;for(n=2,32e6,if(isA025475(n),d=n-n_prev;n_prev=n;if(d>d_max,print(d);d_max=d)))
Showing 1-4 of 4 results.