A121497 Binomial transform of the characteristic function of the prime numbers (A010051).
0, 0, 1, 4, 10, 21, 41, 78, 148, 282, 537, 1013, 1882, 3446, 6267, 11468, 21416, 41209, 81771, 166042, 340994, 700570, 1429375, 2886777, 5771828, 11453105, 22638215, 44742141, 88681674, 176545766, 352992931, 707922077, 1421120880, 2849433326
Offset: 0
Keywords
Links
- T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 0..3324 (terms up to 1000 from Noe)
- Sungjin Kim and Nilotpal Kanti Sinha, Binomial probability of prime number of successes, INTEGERS 20 (2020), #A99.
- Vaclav Kotesovec, Plot of a(n) / (2^n/log(n/2)) for n = 2..10000
Programs
-
Maple
Primes:= select(isprime, [2,seq(i,i=3..100,2)]): G:= add((z/(1-z))^p/(1-z),p=Primes): S:= series(G,z,101): seq(coeff(S,z,i),i=0..100); # Robert Israel, Sep 27 2018
-
Mathematica
Table[Sum[Binomial[n,Prime[i]], {i,PrimePi[n]}], {n,40}]
-
PARI
a(n)=my(s);forprime(p=2,n,s+=binomial(n,p));s \\ Charles R Greathouse IV, Mar 22 2013
Formula
a(n) = Sum_{i=1..pi(n)} binomial(n,prime(i)), where pi(n) is A000720(n), the number of primes <= n.
E.g.f.: exp(x) * (x^2/2! + x^3/3! + x^5/5! + ...) - Eric M. Schmidt, Jul 14 2012
G.f.: Sum_{p prime} x^p/(1-x)^(p+1). - Robert Israel, Sep 27 2018
Extensions
a(0) inserted by Franklin T. Adams-Watters, Jul 13 2012
Comments