cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121544 Sum of all proper base 4 numbers with n digits (those not beginning with 0).

Original entry on oeis.org

6, 114, 1896, 30624, 491136, 7862784, 125822976, 2013241344, 32212156416, 515395682304, 8246335635456, 131941389041664, 2111062300164096, 33776997104615424, 540431954881806336, 8646911282940739584, 138350580546379186176, 2213609288819376390144
Offset: 1

Views

Author

Jonathan Vos Post, Sep 08 2006

Keywords

Comments

Sum of the first 3 * 4^(n-1) integers starting with 4^(n-1).
Sum of the integers from 4^(n-1) to 4^n -1.
First differences of A026337.

Examples

			a(1) = 6 = 1 + 2 + 3.
a(2) = 114 = 10_4 + 11_4 + 12_4 + 13_4 + 20_4 + 21_4 + 22_4 + 23_4 + 30_4 + 31_4 + 32_4 + 33_4 = (4+5+6+7+8+9+10+11+12+13+14+15)_10.
		

Crossrefs

Programs

  • Magma
    [3*Binomial(5*4^(n-1), 2)/5: n in [1..20]]; // G. C. Greubel, Nov 07 2024
    
  • Mathematica
    Table[3*4^(n-1)*(5*4^(n-1) - 1)/2, {n,20}] (* James C. McMahon, Oct 19 2024 *)
  • SageMath
    def A121544(n): return 3*binomial(5*4^(n-1), 2)//5
    [A121544(n) for n in range(1,21)] # G. C. Greubel, Nov 07 2024

Formula

a(n) = 3 * 4^(n-1) * (4^(n-1) + 4^n - 1)/2.
G.f.: 6*x*(1-x) / ((1-4*x)*(1-16*x)). - Colin Barker, Apr 30 2013
From G. C. Greubel, Nov 07 2024: (Start)
a(n) = (3/5)*binomial(5*4^(n-1), 2).
E.g.f.: (3/32)*(-1 - 4*exp(4*x) + 5*exp(16*x)). (End)

Extensions

More terms from Colin Barker, Apr 30 2013
Edited by Michel Marcus, Apr 15 2024