cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121576 Riordan array (2-2*x-sqrt(1-8*x+4*x^2), (1-2*x-sqrt(1-8*x+4*x^2))/2).

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 24, 24, 8, 1, 114, 123, 51, 11, 1, 600, 672, 312, 87, 14, 1, 3372, 3858, 1914, 618, 132, 17, 1, 19824, 22992, 11904, 4218, 1068, 186, 20, 1, 120426, 140991, 75183, 28383, 8043, 1689, 249, 23, 1, 749976, 884112, 481704, 190347, 58398, 13929, 2508, 321, 26, 1
Offset: 0

Views

Author

Paul Barry, Aug 08 2006

Keywords

Comments

Inverse of Riordan array (1/(1+2*x), x*(1-x)/(1+2*x)).
Row sums are A047891; first column is A054872. Signed version given by A121575.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [2, 1, 3, 1, 3, 1, 3, 1, 3, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 09 2006

Examples

			Triangle begins
     1;
     2,    1;
     6,    5,    1;
    24,   24,    8,   1;
   114,  123,   51,  11,   1;
   600,  672,  312,  87,  14,  1;
  3372, 3858, 1914, 618, 132, 17, 1;
From _Paul Barry_, Apr 27 2009: (Start)
Production matrix is
  2, 1,
  2, 3, 1,
  2, 3, 3, 1,
  2, 3, 3, 3, 1,
  2, 3, 3, 3, 3, 1,
  2, 3, 3, 3, 3, 3, 1,
  2, 3, 3, 3, 3, 3, 3, 1
In general, the production matrix of the inverse of (1/(1-rx),x(1-x)/(1-rx)) is
  -r, 1,
  -r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1 - r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1,
  -r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 - r, 1 (End)
		

Programs

  • Magma
    [[(&+[ 2^j*Binomial(n,j)*Binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1))/2: j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
  • Mathematica
    Flatten[Table[Sum[Binomial[n,i]Binomial[2n-k-i,n](4-9i+3i^2-6(i-1)n+2n^2)/((n-i+2)(n-i+1))2^i,{i,0,n-k}]/2,{n,0,8},{k,0,n}]]
    (* Emanuele Munarini, May 18 2011 *)
  • Maxima
    create_list(sum(binomial(n,i)*binomial(2*n-k-i,n)*(4-9*i+3*i^2-6*(i-1)*n+2*n^2)/((n-i+2)*(n-i+1))*2^i,i,0,n-k)/2,n,0,8,k,0,n);  /* Emanuele Munarini, May 18 2011 */
    
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0, n-k, 2^j*binomial(n,j) *binomial(2*n-k-j, n)*(4-9*j+3*j^2-6*(j-1)*n + 2*n^2)/((n-j+2)*(n-j+1)))/2, ", "))) \\ G. C. Greubel, Nov 02 2018
    

Formula

T(n,k) = [x^(n-k)](1-2*x-2*x^2)*(1+2*x)^n/(1-x)^(n+1) = (1/2)*Sum_{i=0..n-k} binomial(n,i) * binomial(2*n-k-i,n) * (4 - 9*i + 3*i^2 - 6*(i-1)*n + 2*n^2)/((n-i+2)*(n-i+1))*2^i. - Emanuele Munarini, May 18 2011