cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121593 Expansion of (eta(q^7) / eta(q))^4 in powers of q.

Original entry on oeis.org

1, 4, 14, 40, 105, 252, 574, 1236, 2564, 5124, 9948, 18788, 34685, 62664, 111132, 193672, 332325, 561996, 937958, 1546132, 2519825, 4062888, 6486008, 10257324, 16079389, 24996636, 38555216, 59025820, 89728900, 135486960, 203274344
Offset: 1

Views

Author

Michael Somos, Aug 09 2006

Keywords

Comments

G.f. A(q) is denoted by tau(q) / 49 in Klein and Fricke 1890.

Examples

			G.f. = q + 4*q^2 + 14*q^3 + 40*q^4 + 105*q^5 + 252*q^6 + 574*q^7 + ...
		

Crossrefs

Cf. A030181.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^7] / QPochhammer[ q])^4, {q, 0, n}]; (* Michael Somos, Jan 02 2015 *)
    nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(7*k)) / (1 - x^k))^4, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
    eta[q_]:=q^(1/6) QPochhammer[q]; a[n_]:=SeriesCoefficient[(eta[q^7] / eta[q])^4, {q, 0, n}]; Table[a[n], {n, 4, 35}] (* Vincenzo Librandi, Oct 18 2018 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^7 + A) / eta(x + A))^4, n))};

Formula

Euler transform of period 7 sequence [4, 4, 4, 4, 4, 4, 0, ...].
G.f.: x * (Product_{k>0} (1 - x^(7*k)) / (1 - x^k))^4.
G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u, v) = (u + v) * (u - v)^2 - u*v * (1 + 7*u) * (1 + 7*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 7^-2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030181. - Michael Somos, Jan 02 2015
G.f. A(q) satisfies j(q) = f(49 * A(q)) where f(x) := (x^2 + 13*x + 49) * (x^2 + 5*x + 1)^3 / x. - Michael Somos, Jan 02 2015
Convolution inverse of A030181. - Michael Somos, Jan 02 2015
a(n) ~ exp(4*Pi*sqrt(n/7)) / (49 * sqrt(2) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (4/(n-1))*Sum_{k=1..n-1} A113957(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017