A121596 Expansion of q^(-1/2)(eta(q^3)/eta(q))^6 in powers of q.
1, 6, 27, 92, 279, 756, 1913, 4536, 10260, 22220, 46479, 94176, 185749, 357426, 673056, 1242404, 2252772, 4017816, 7058609, 12228060, 20911230, 35330324, 59023728, 97568712, 159693831, 258941124, 416181510, 663337512, 1048935414
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1-x^(3*k)) / (1-x^k))^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *) CoefficientList[Series[(QPochhammer[q^3]/QPochhammer[q])^6, {q,0,50}], q] (* G. C. Greubel, Nov 02 2018 *)
-
PARI
{a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^3+A)/eta(x+A))^6, n))}
Formula
Euler transform of period 3 sequence [ 6, 6, 0, ...].
Given g.f. A(x), then B(x)=x*A(x)^2 satisfies 0=f(B(x), B(x^2)) where f(u,v)=u^3+v^3-u*v-24*u*v*(u+v)-729*u^2*v^2.
G.f.: (Product_{k>0} (1-x^(3*k))/(1-x^k))^6.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (27 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015