cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121596 Expansion of q^(-1/2)(eta(q^3)/eta(q))^6 in powers of q.

Original entry on oeis.org

1, 6, 27, 92, 279, 756, 1913, 4536, 10260, 22220, 46479, 94176, 185749, 357426, 673056, 1242404, 2252772, 4017816, 7058609, 12228060, 20911230, 35330324, 59023728, 97568712, 159693831, 258941124, 416181510, 663337512, 1048935414
Offset: 0

Views

Author

Michael Somos, Aug 09 2006

Keywords

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1-x^(3*k)) / (1-x^k))^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    CoefficientList[Series[(QPochhammer[q^3]/QPochhammer[q])^6, {q,0,50}], q] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^3+A)/eta(x+A))^6, n))}

Formula

Euler transform of period 3 sequence [ 6, 6, 0, ...].
Given g.f. A(x), then B(x)=x*A(x)^2 satisfies 0=f(B(x), B(x^2)) where f(u,v)=u^3+v^3-u*v-24*u*v*(u+v)-729*u^2*v^2.
G.f.: (Product_{k>0} (1-x^(3*k))/(1-x^k))^6.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (27 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015