A121590
Expansion of (eta(q^3) / eta(q))^12 in powers of q.
Original entry on oeis.org
1, 12, 90, 508, 2391, 9828, 36428, 124188, 395199, 1186344, 3387252, 9257364, 24343037, 61848096, 152356032, 364959196, 852243948, 1944226476, 4341094220, 9502198728, 20419293123, 43131708720, 89656112256, 183580652340
Offset: 1
G.f. = q + 12*q^2 + 90*q^3 + 508*q^4 + 2391*q^5 + 9828*q^6 + 36428*q^7 + ...
-
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3] / QPochhammer[ q])^12, {q, 0, n}]; (* Michael Somos, Aug 09 2015 *)
nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(3*k)) / (1 - x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
-
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x + A))^12, n))};
A007260
McKay-Thompson series of class 6a for Monster.
Original entry on oeis.org
1, -33, -153, -713, -2550, -7479, -20314, -51951, -122229, -276656, -601068, -1254105, -2541531, -5018721, -9647991, -18168984, -33554784, -60818040, -108471674, -190607871, -330140403, -564580142, -953980392, -1593599832, -2634301308, -4311874755, -6991318008
Offset: 0
G.f. = 1 - 33*x - 153*x^2 - 713*x^3 - 2550*x^4 - 7479*x^5 - 20314*x^6 + ...
T6a = 1/q - 33*q - 153*q^3 - 713*q^5 - 2550*q^7 - 7479*q^9 - 20314*q^11 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms 0..499 from G. A. Edgar)
- D. Alexander, C. Cummins, J. McKay and C. Simons, Completely replicable functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Index entries for McKay-Thompson series for Monster simple group
-
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^3])^6 - 27 x (QPochhammer[ x^3] / QPochhammer[ x])^6, {x, 0, n} ]; (* Michael Somos, Jun 14 2015 *)
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^3 + A))^6 - 27 * x * (eta(x^3 + A) / eta(x + A))^6, n))}; /* Michael Somos, Jun 14 2015 */
-
{ my(q='q+O('q^66), t=(eta(q)/eta(q^3))^6 ); Vec( t - 27*q/t ) } \\ Joerg Arndt, Apr 02 2017
A007261
McKay-Thompson series of class 6b for the Monster group.
Original entry on oeis.org
1, 21, 171, 745, 2418, 7587, 20510, 51351, 122715, 277384, 598812, 1255761, 2543973, 5011725, 9653013, 18176040, 33535032, 60831648, 108490390, 190557015, 330174837, 564626278, 953857104, 1593681480, 2634409140, 4311592119, 6991502688, 11237020682, 17909802270
Offset: 0
1 + 21*x + 171*x^2 + 745*x^3 + 2418*x^4 + 7587*x^5 + 20510*x^6 + 51351*x^7 + ...
T6b = 1/q + 21*q + 171*q^3 + 745*q^5 + 2418*q^7 + 7587*q^9 + 20510*q^11 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3000
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
- Index entries for McKay-Thompson series for Monster simple group
-
a[0] = 1; a[n_] := Module[{A = x*O[x]^n}, A = (QPochhammer[x^3 + A] / QPochhammer[x + A])^12; SeriesCoefficient[Sqrt[(1 + 27*x*A)^2/A], n]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2015, adapted from Michael Somos's PARI script *)
CoefficientList[Series[(QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3)^3 / (QPochhammer[x, x]^3*QPochhammer[x^3, x^3]^6), {x, 0, 50}], x] (* Vaclav Kotesovec, Nov 07 2015 *)
nmax = 30; CoefficientList[Series[Product[(1 - x^k)^6/(1 - x^(3*k))^6, {k, 1, nmax}] + 27*x*Product[(1 - x^(3*k))^6/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2017 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( sqrt((1 + 27 * x * A)^2 / A), n))} /* Michael Somos, Jun 16 2012 */
-
N=66; q='q+O('q^N); t=(eta(q) / eta(q^3))^6; Vec(t + 27*q/t) \\ Joerg Arndt, Mar 11 2017
A296162
a(n) = [x^n] Product_{k>=1} ((1 - x^(3*k))/(1 - x^k))^n.
Original entry on oeis.org
1, 1, 5, 19, 89, 406, 1913, 9073, 43505, 209971, 1019390, 4971781, 24343037, 119579006, 589050663, 2908727839, 14393759457, 71360342129, 354372852011, 1762416036422, 8776797353574, 43761058841638, 218431753457637, 1091385769314272, 5458068218285909, 27319061357620056
Offset: 0
-
Table[SeriesCoefficient[Product[((1 - x^(3 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[Product[(1 + x^k + x^(2 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
(* Calculation of constant d: *) With[{k = 3}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
Showing 1-4 of 4 results.
Comments