cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A121590 Expansion of (eta(q^3) / eta(q))^12 in powers of q.

Original entry on oeis.org

1, 12, 90, 508, 2391, 9828, 36428, 124188, 395199, 1186344, 3387252, 9257364, 24343037, 61848096, 152356032, 364959196, 852243948, 1944226476, 4341094220, 9502198728, 20419293123, 43131708720, 89656112256, 183580652340
Offset: 1

Views

Author

Michael Somos, Aug 09 2006

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 12*q^2 + 90*q^3 + 508*q^4 + 2391*q^5 + 9828*q^6 + 36428*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3] / QPochhammer[ q])^12, {q, 0, n}]; (* Michael Somos, Aug 09 2015 *)
    nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(3*k)) / (1 - x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x + A))^12, n))};

Formula

Expansion of (c(q) / (3 * b(q)))^3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 16 2012
Euler transform of period 3 sequence [ 12, 12, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^3 + v^3 - u*v - 24*u*v * (u + v) - 729*u^2*v^2.
G.f.: x * (Product_{k>0} (1 - x^(3*k)) / (1 - x^k))^12.
Convolution inverse of A030182. - Michael Somos, Jun 16 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 3^-6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030182.
Convolution 12th power of A000726, cube of A128758, square of A121596. - Michael Somos, Aug 09 2015
a(n) ~ exp(4*Pi*sqrt(n/3)) / (729 * sqrt(2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (12/(n-1))*Sum_{k=1..n-1} A046913(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017

A007260 McKay-Thompson series of class 6a for Monster.

Original entry on oeis.org

1, -33, -153, -713, -2550, -7479, -20314, -51951, -122229, -276656, -601068, -1254105, -2541531, -5018721, -9647991, -18168984, -33554784, -60818040, -108471674, -190607871, -330140403, -564580142, -953980392, -1593599832, -2634301308, -4311874755, -6991318008
Offset: 0

Views

Author

Keywords

Comments

A more correct name would be: Expansion of replicable function of class 6a. See Alexander et al., 1992. - N. J. A. Sloane, Jun 12 2015

Examples

			G.f. = 1 - 33*x - 153*x^2 - 713*x^3 - 2550*x^4 - 7479*x^5 - 20314*x^6 + ...
T6a = 1/q - 33*q - 153*q^3 - 713*q^5 - 2550*q^7 - 7479*q^9 - 20314*q^11 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^3])^6 - 27 x (QPochhammer[ x^3] / QPochhammer[ x])^6, {x, 0, n} ]; (* Michael Somos, Jun 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^3 + A))^6 - 27 * x * (eta(x^3 + A) / eta(x + A))^6, n))}; /* Michael Somos, Jun 14 2015 */
    
  • PARI
    { my(q='q+O('q^66), t=(eta(q)/eta(q^3))^6 ); Vec( t - 27*q/t ) } \\ Joerg Arndt, Apr 02 2017

Formula

Expansion of q * ((eta(q^2) / eta(q^6))^6 - 27 * (eta(q^6) / eta(q^2))^6) in powers of q^2. - Michael Somos, Jun 14 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = -1 / f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 14 2015
a(n) = A007262(n) - 27 * A121596(n-1). - Michael Somos, Jun 14 2015
Convolution square is A258917. - Michael Somos, Jun 14 2015
a(n) ~ -exp(2*Pi*sqrt(2*n/3)) / (2^(3/4)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017

A007261 McKay-Thompson series of class 6b for the Monster group.

Original entry on oeis.org

1, 21, 171, 745, 2418, 7587, 20510, 51351, 122715, 277384, 598812, 1255761, 2543973, 5011725, 9653013, 18176040, 33535032, 60831648, 108490390, 190557015, 330174837, 564626278, 953857104, 1593681480, 2634409140, 4311592119, 6991502688, 11237020682, 17909802270
Offset: 0

Views

Author

Keywords

Comments

From Gary W. Adamson, Jul 21 2009: (Start)
(1 + 21x + 171x^2 + 745x^3 + ...)^2 = (1 + 42x + 783x^2 + 8672x^3 + ...)
where A030197 = (1, 42, 783, 8672, 65367, ...). (End)

Examples

			1 + 21*x + 171*x^2 + 745*x^3 + 2418*x^4 + 7587*x^5 + 20510*x^6 + 51351*x^7 + ...
T6b = 1/q + 21*q + 171*q^3 + 745*q^5 + 2418*q^7 + 7587*q^9 + 20510*q^11 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A030197. - Gary W. Adamson, Jul 21 2009
Cf. A058537.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{A = x*O[x]^n}, A = (QPochhammer[x^3 + A] / QPochhammer[x + A])^12; SeriesCoefficient[Sqrt[(1 + 27*x*A)^2/A], n]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2015, adapted from Michael Somos's PARI script *)
    CoefficientList[Series[(QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3)^3 / (QPochhammer[x, x]^3*QPochhammer[x^3, x^3]^6), {x, 0, 50}], x] (* Vaclav Kotesovec, Nov 07 2015 *)
    nmax = 30; CoefficientList[Series[Product[(1 - x^k)^6/(1 - x^(3*k))^6, {k, 1, nmax}] + 27*x*Product[(1 - x^(3*k))^6/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( sqrt((1 + 27 * x * A)^2 / A), n))} /* Michael Somos, Jun 16 2012 */
    
  • PARI
    N=66; q='q+O('q^N); t=(eta(q) / eta(q^3))^6; Vec(t + 27*q/t) \\ Joerg Arndt, Mar 11 2017

Formula

Expansion of (27 * x * (b(x)^3 + c(x)^3)^2 / (b(x) * c(x))^3)^(1/2) in powers of x where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 16 2012
Convolution cube of A058537. - Michael Somos, Aug 20 2012
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 07 2015
Expansion of q^(1/2) * (eta(q)^6/eta(q^3)^6 + 27*eta(q^3)^6/eta(q)^6) in powers of q. - G. A. Edgar, Mar 10 2017
a(n) = A007262(n) + 27 * A121596(n-1). - Sean A. Irvine, Nov 26 2017

A296162 a(n) = [x^n] Product_{k>=1} ((1 - x^(3*k))/(1 - x^k))^n.

Original entry on oeis.org

1, 1, 5, 19, 89, 406, 1913, 9073, 43505, 209971, 1019390, 4971781, 24343037, 119579006, 589050663, 2908727839, 14393759457, 71360342129, 354372852011, 1762416036422, 8776797353574, 43761058841638, 218431753457637, 1091385769314272, 5458068218285909, 27319061357620056
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^(3 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[(1 + x^k + x^(2 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    (* Calculation of constant d: *) With[{k = 3}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k + x^(2*k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 5.1069752682291604222843644516987970799026747758649349... and c = 0.271879273312907861082536692355942116774864... - Vaclav Kotesovec, May 13 2018
Showing 1-4 of 4 results.