cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121633 Sum of the bottom levels of the last column over all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Original entry on oeis.org

0, 0, 1, 9, 68, 527, 4408, 40303, 403046, 4393339, 51955528, 663383135, 9102982354, 133668773755, 2092209897524, 34783032728383, 612234346270510, 11375905660965179, 222544581264066400, 4572536725690159999, 98456173247669999978, 2217126753620449439515
Offset: 1

Views

Author

Emeric Deutsch, Aug 12 2006

Keywords

Comments

a(n) = Sum(k*A121632(n,k), k>=0).

Examples

			a(2)=0 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, all of whose columns start at level 0.
		

References

  • E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

Crossrefs

Programs

  • Maple
    a[1]:=0: for n from 2 to 23 do a[n]:=n*a[n-1]+(n-1)!-1 od: seq(a[n],n=1..23);
  • Mathematica
    RecurrenceTable[{a[1]==0,a[n]==n*a[n-1]+(n-1)!-1},a,{n,20}] (* Harvey P. Dale, Dec 01 2013 *)

Formula

a(1)=0; a(n) = n*a(n-1)+(n-1)!-1 for n>=2.
a(n)= A000254(n)- A002672(n) a(n)= n!*sum(1/k,k=1..10)- floor(n!(e-1)) [From Gary Detlefs, Jul 18 2010]
D-finite with recurrence a(n) +(-2*n-1)*a(n-1) +(n^2+2*n-4)*a(n-2) +(-2*n^2+6*n-3)*a(n-3) +(n-3)^2*a(n-4)=0. - R. J. Mathar, Jul 26 2022