A121659 Number of partitions of n into parts with at most one part not greater than 2.
1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 20, 25, 32, 40, 51, 63, 79, 97, 121, 148, 182, 221, 271, 328, 398, 479, 579, 694, 834, 995, 1190, 1415, 1684, 1995, 2366, 2793, 3298, 3881, 4569, 5360, 6288, 7355, 8603, 10037, 11705, 13619, 15842, 18388, 21333, 24703
Offset: 1
Keywords
Examples
a(8) = #{8,7+1,6+2,5+3,4+4,4+3+1,3+3+2} = 7; a(9) = #{9,8+1,7+2,6+3,5+4,5+3+1,4+4+1,4+3+2,3+3+3} = 9.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
- Mircea Merca, Fast algorithm for generating ascending compositions, arXiv:1903.10797 [math.CO], 2019.
Formula
a(n) = p(n) - p(n-2) - p(n-3) + p(n-5) where p(n) = A000041(n). See Merca p. 6. - Michel Marcus, Mar 27 2019
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (4*sqrt(3)*n^2) * (1 - (18/Pi + 61*Pi/24)/sqrt(6*n)). - Vaclav Kotesovec, Jan 15 2022
Comments