A121740 Solutions to the Pell equation x^2 - 17y^2 = 1 (y values).
0, 8, 528, 34840, 2298912, 151693352, 10009462320, 660472819768, 43581196642368, 2875698505576520, 189752520171407952, 12520790632807348312, 826182429245113580640, 54515519539544688973928
Offset: 1
Examples
A099370(1)^2 - 17*a(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Tanya Khovanova, Recursive Sequences.
- Eric Weisstein's World of Mathematics, Pell Equation.
- Index entries for linear recurrences with constant coefficients, signature (66,-1).
Programs
-
Magma
I:=[0, 8]; [n le 2 select I[n] else 66*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
-
Mathematica
LinearRecurrence[{66,-1},{0,8},30] (* Vincenzo Librandi, Dec 18 2011 *)
-
Maxima
makelist(expand(((33+8*sqrt(17))^n - (33-8*sqrt(17))^n) /(4*sqrt(17)/2)), n, 0, 16); /* Vincenzo Librandi, Dec 18 2011 */
-
PARI
\\ Program uses fact that continued fraction for sqrt(17) = [4,8,8,...]. print1("0, "); forstep(n=2,40,2,v=vector(n,i,if(i>1,8,4)); print1(contfracpnqn(v)[2,1],", "))
Formula
a(n) = ((33+8*sqrt(17))^(n-1) - (33-8*sqrt(17))^(n-1))/(2*sqrt(17)).
From Mohamed Bouhamida, Feb 07 2007: (Start)
a(n) = 65*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 67*(a(n-1) - a(n-2)) + a(n-3). (End)
From Philippe Deléham, Nov 18 2008: (Start)
a(n) = 66*a(n-1) - a(n-2) for n > 1; a(1)=0, a(2)=8.
G.f.: 8*x^2/(1 - 66*x + x^2). (End)
E.g.f.: (1/17)*exp(33*x)*(33*sqrt(17)*sinh(8*sqrt(17)*x) + 136*(1 - cosh(8*sqrt(17)*x))). - Stefano Spezia, Feb 08 2020
Extensions
Offset changed from 0 to 1 and g.f. adapted by Vincenzo Librandi, Dec 18 2011
Comments