cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121740 Solutions to the Pell equation x^2 - 17y^2 = 1 (y values).

Original entry on oeis.org

0, 8, 528, 34840, 2298912, 151693352, 10009462320, 660472819768, 43581196642368, 2875698505576520, 189752520171407952, 12520790632807348312, 826182429245113580640, 54515519539544688973928
Offset: 1

Views

Author

Rick L. Shepherd, Jul 31 2006

Keywords

Comments

After initial term this sequence bisects A041025. See A099370 for corresponding x values. a(n+1)/a(n) apparently converges to (4+sqrt(17))^2.
The first solution to the equation x^2 - 17*y^2 = 1 is (X(1); Y(1)) = (1, 0) and the other solutions are defined by: (X(n), Y(n))= (33*X(n-1) + 136*Y(n-1), 8*X(n-1) + 33*Y(n-1)) with n >= 2. - Mohamed Bouhamida, Jan 16 2020

Examples

			A099370(1)^2 - 17*a(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.
		

Crossrefs

Programs

  • Magma
    I:=[0, 8]; [n le 2 select I[n] else 66*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
    
  • Mathematica
    LinearRecurrence[{66,-1},{0,8},30] (* Vincenzo Librandi, Dec 18 2011 *)
  • Maxima
    makelist(expand(((33+8*sqrt(17))^n - (33-8*sqrt(17))^n) /(4*sqrt(17)/2)), n, 0, 16); /* Vincenzo Librandi, Dec 18 2011 */
  • PARI
    \\ Program uses fact that continued fraction for sqrt(17) = [4,8,8,...].
    print1("0, "); forstep(n=2,40,2,v=vector(n,i,if(i>1,8,4)); print1(contfracpnqn(v)[2,1],", "))
    

Formula

a(n) = ((33+8*sqrt(17))^(n-1) - (33-8*sqrt(17))^(n-1))/(2*sqrt(17)).
From Mohamed Bouhamida, Feb 07 2007: (Start)
a(n) = 65*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 67*(a(n-1) - a(n-2)) + a(n-3). (End)
From Philippe Deléham, Nov 18 2008: (Start)
a(n) = 66*a(n-1) - a(n-2) for n > 1; a(1)=0, a(2)=8.
G.f.: 8*x^2/(1 - 66*x + x^2). (End)
E.g.f.: (1/17)*exp(33*x)*(33*sqrt(17)*sinh(8*sqrt(17)*x) + 136*(1 - cosh(8*sqrt(17)*x))). - Stefano Spezia, Feb 08 2020

Extensions

Offset changed from 0 to 1 and g.f. adapted by Vincenzo Librandi, Dec 18 2011