A121743 Values of the Ramanujan tau triples mod 691 such that three consecutive Ramanujan tau numbers are congruent mod 691.
0, 276, 91, 79, 0, 0, 0, 0, 76, 349, 212, 355, 662, 227, 342, 616, 182, 641, 105, 0, 21, 33, 0, 0, 316, 436, 346, 109, 468, 557, 261, 512, 299, 532, 565, 214, 72, 218, 436, 0, 166, 532, 0, 591, 0, 144, 0, 544, 257, 0, 0, 0, 422, 0, 0, 488, 0, 0, 0, 488, 0, 233, 371, 0, 380, 28, 0, 641, 414, 331, 0, 487, 0, 666, 130, 14, 0, 0, 321, 620, 0, 339, 533
Offset: 1
Keywords
Links
- Jud McCranie, Table of n, a(n) for n = 1..2568
- Eric Weisstein Ramanujan's Tau Function.
Programs
-
Mathematica
Do[f=Mod[DivisorSigma[11,n],691];g=Mod[DivisorSigma[11,n+1],691];h=Mod[DivisorSigma[11,n+2],691];If[f==g&&g==h,Print[{n,f}]],{n,1,1500000}] Select[Partition[Table[Mod[DivisorSigma[11,n],691],{n,10000000}],3,1],Length[ Union[#]]==1&][[All,1]] (* Harvey P. Dale, Jan 31 2020 *)
Extensions
a(7)-a(16) from Amiram Eldar, Jan 26 2020
More terms by Jud McCranie Nov 02 2020
Comments