cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121743 Values of the Ramanujan tau triples mod 691 such that three consecutive Ramanujan tau numbers are congruent mod 691.

Original entry on oeis.org

0, 276, 91, 79, 0, 0, 0, 0, 76, 349, 212, 355, 662, 227, 342, 616, 182, 641, 105, 0, 21, 33, 0, 0, 316, 436, 346, 109, 468, 557, 261, 512, 299, 532, 565, 214, 72, 218, 436, 0, 166, 532, 0, 591, 0, 144, 0, 544, 257, 0, 0, 0, 422, 0, 0, 488, 0, 0, 0, 488, 0, 233, 371, 0, 380, 28, 0, 641, 414, 331, 0, 487, 0, 666, 130, 14, 0, 0, 321, 620, 0, 339, 533
Offset: 1

Views

Author

Alexander Adamchuk, Aug 19 2006

Keywords

Comments

Corresponding indices of the Ramanujan tau triples mod 691 are listed in A121742. All a(n) belong to the Ramanujan tau twins mod 691 A121734(n). There are also quadruplets in the Ramanujan tau mod 691 such that A046694(n) = A046694(n+1) = A046694(n+2) = A046694(n+3). The first such Ramanujan tau quadruplet mod 691 starts with A046694(1409635) = 0.

Crossrefs

Programs

  • Mathematica
    Do[f=Mod[DivisorSigma[11,n],691];g=Mod[DivisorSigma[11,n+1],691];h=Mod[DivisorSigma[11,n+2],691];If[f==g&&g==h,Print[{n,f}]],{n,1,1500000}]
    Select[Partition[Table[Mod[DivisorSigma[11,n],691],{n,10000000}],3,1],Length[ Union[#]]==1&][[All,1]] (* Harvey P. Dale, Jan 31 2020 *)

Formula

a(n) = A000594(A121742(n)) mod 691.
a(n) = A046694(A121742(n)).

Extensions

a(7)-a(16) from Amiram Eldar, Jan 26 2020
More terms by Jud McCranie Nov 02 2020