cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061092 a(0) = 1; for n>0, a(n) = smallest prime of the form k*a(n-1) + 1.

Original entry on oeis.org

1, 2, 3, 7, 29, 59, 709, 2837, 22697, 590123, 1180247, 9441977, 169955587, 2719289393, 5438578787, 32631472723, 391577672677, 1566310690709, 50121942102689, 1503658263080671, 9021949578484027, 360877983139361081, 21652678988361664861, 476358937743956626943, 5716307252927479523317
Offset: 0

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Comments

Dirichlet proved that for every prime p there exists at least one prime of the form k*p + 1, hence the sequence is infinite.

Examples

			59 = 2*29 + 1; 709 = 12*59 + 1.
		

Crossrefs

Corresponding values of k are in A121799.

Programs

  • Mathematica
    a[1] = 2; a[n_] := a[n] = Block[{k = 1, p = a[n - 1]}, While[ !PrimeQ[k*p + 1], k++ ]; k*p + 1]; Table[ a[n], {n, 21}] (* Robert G. Wilson v, Nov 26 2004 *)
  • PARI
    for (n=0, 100, if (n>0, k=1; while (!isprime(k*a + 1), k++); a=k*a + 1, a=1); write("b061092.txt", n, " ", a)) \\ Harry J. Smith, Jul 17 2009

Extensions

More terms from Patrick De Geest, May 29 2001
Edited by Charles R Greathouse IV, Aug 02 2010

A113767 Values of the exponents in A084435.

Original entry on oeis.org

0, 1, 2, 1, 5, 1, 1, 29, 3, 37, 31, 227, 835, 115, 7615, 6071, 218431
Offset: 1

Views

Author

Ken Takusagawa, Jan 19 2006

Keywords

Comments

If A084435 ever hits a Sierpinski number, the sequence is finite.
a(18) > 10^6. - Harsh R. Aggarwal, Sep 14 2024

Crossrefs

Programs

  • PARI
    a=2;for(x=1,16,for(k=0,1000000,p=2^k*a+1;if(isprime(p),print(k);break));a=p)

Extensions

a(16)-a(17) from Harsh R. Aggarwal, Apr 11 2018
Showing 1-2 of 2 results.