A230900 a(n) = 2^Lucas(n).
4, 2, 8, 16, 128, 2048, 262144, 536870912, 140737488355328, 75557863725914323419136, 10633823966279326983230456482242756608, 803469022129495137770981046170581301261101496891396417650688
Offset: 0
Links
- William W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
- P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
- J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32.
Programs
-
Magma
[2^(Lucas(n)): n in [0..10]]; // G. C. Greubel, Dec 22 2017
-
Maple
a := proc(n) option remember; if n = 0 then 4 elif n = 1 then 2 else a(n-1)*a(n-2); fi; end; seq(a(n), n = 0..10);
-
Mathematica
2^LucasL[Range[0,15]] (* Harvey P. Dale, Jul 21 2015 *)
-
PARI
for(n=0,10, print1(2^(fibonacci(n+1) + fibonacci(n-1)), ", ")) \\ G. C. Greubel, Dec 22 2017
Formula
a(n) = 2^Lucas(n) = 2^A000032(n).
Recurrence: a(n) = a(n-1)*a(n-2) with a(0) = 4, a(1) = 2.
Sum_{n>=1} 1/a(n) = A121821. - Amiram Eldar, Oct 27 2020
Comments