cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121886 a(n) = (1/n!)* Sum_{k=0..n} |Stirling1(n,k)|*A122399(k).

Original entry on oeis.org

1, 1, 5, 40, 444, 6324, 110023, 2261576, 53632424, 1441341350, 43290170494, 1437020742408, 52243864528990, 2064488610832106, 88106523694973953, 4038627301344466648, 197888243609535940091, 10321811633042512528240
Offset: 0

Views

Author

Vladeta Jovovic, Aug 31 2006

Keywords

Comments

Number of square matrices with nonnegative integer entries and without zero rows such that sum of all entries is equal to n. - Vladeta Jovovic, Mar 04 2008

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 444*x^4 + 6324*x^5 +...
where
A(x) = 1 + (1/(1-x) - 1) + (1/(1-x)^2 - 1)^2 + (1/(1-x)^3 - 1)^3 + ...
Also,
A(x) = 1/2 + (1-x)/(1 + (1-x))^2 + (1-x)^2/(1 + (1-x)^2)^3 +  + (1-x)^3/(1 + (1-x)^3)^4 + (1-x)^4/(1 + (1-x)^4)^5 + ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[1/n!* Sum[Abs[StirlingS1[n,k]]*Sum[m^k*m!*StirlingS2[k, m], {m, 1, k}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 07 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(1/(1-x+x*O(x^n))^m-1)^m),n)}

Formula

G.f.: Sum_{n>=0} ( 1/(1-x)^n - 1 )^n.
G.f.: Sum_{n>=0} (1-x)^n / (1 + (1-x)^n)^(n+1). - Paul D. Hanna, Sep 07 2018
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.38377369607518184186200387319561108... . - Vaclav Kotesovec, May 07 2014

Extensions

More terms from Max Alekseyev, Feb 01 2007