cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121910 a(n) = 3*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5), with a(1)=a(2)=a(3)=a(4)=a(5)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 29, 869, 756029, 285790302433, 16335219393063437264866, 9201358366190200404401435237110861938769705
Offset: 1

Views

Author

Roger L. Bagula, Sep 09 2006

Keywords

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<6 then return 1;
        else return 3*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5);
        fi;
      end;
    List([1..15], n-> a(n) ); # G. C. Greubel, Oct 05 2019
  • Magma
    [n lt 6 select 1 else 3*Self(n-1)*Self(n-2)*Self(n-3)*Self(n-4) - Self(n-5): n in [1..15]]; // G. C. Greubel, Oct 07 2019
    
  • Maple
    a:= proc(n) option remember;
          if n<6 then 1 else 3*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5) fi;
        end:
    seq(a(n), n=1..15); # G. C. Greubel, Oct 07 2019
  • Mathematica
    a[n_]:= a[n]= If[n<6, 1, 3*a[n-1]*a[n-2]*a[n-3]*a[n-4] - a[n-5]]; Table[a[n], {n, 15}] (* modified by G. C. Greubel, Oct 07 2019 *)
  • PARI
    my(m=15, v=concat([1,1,1,1,1], vector(m-5))); for(n=6, m, v[n] = 3*v[n-1] *v[n-2]*v[n-3]*v[n-4] - v[n-5]); v \\ G. C. Greubel, Oct 07 2019
    
  • Sage
    def a(n):
        if (n<6): return 1
        else: return 3*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5)
    [a(n) for n in (1..15)] # G. C. Greubel, Oct 07 2019
    

Extensions

Edited by N. J. A. Sloane, Sep 15 2006
Definition adapted to offset by Georg Fischer, Jun 18 2021

A204687 a(n) = A204321(n)/4.

Original entry on oeis.org

1, 3, 33, 4323, 74748993, 22349647743307203, 1998027016999666984531472383425633, 15968447842642350164774423714587589071259011612916483703599782377123
Offset: 1

Views

Author

Keywords

Comments

Terms of the sequence can be presented as products of the following distinct prime factors: 1, 3, 3*11, 3*11*131, 3*11*131*17291, 3*11*131*17291*298995971. Alexander R. Povolotsky, Jan 19 2012
Those factors are A121897(m) for m >= 5. - Alexander R. Povolotsky, Jun 17 2012

Crossrefs

Formula

a(n) = product(A126604(k), k=2...n) for n >= 2.
Showing 1-2 of 2 results.