cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A121917 a(n) = ceiling((Pi+e)^(n*e)).

Original entry on oeis.org

1, 123, 14952, 1828145, 223535960, 27332807666, 3342112728282, 408656059975458, 49968325108097956, 6109865382293662598, 747082374864324679925, 91349324397617876090444, 11169717488538903806777418, 1365774619533204572560235118
Offset: 0

Views

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Ceiling((Pi(C)+Exp(1))^(n*Exp(1))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    Ceiling[(Pi + E)^(E (Range[0, 20]))] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil((Pi+exp(1))^(n*exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset changed to 0 by Georg Fischer, Sep 02 2022

A121916 a(n) = floor((Pi+e)^(n*e)).

Original entry on oeis.org

1, 122, 14951, 1828144, 223535959, 27332807665, 3342112728281, 408656059975457, 49968325108097955, 6109865382293662597, 747082374864324679924, 91349324397617876090443, 11169717488538903806777417, 1365774619533204572560235117
Offset: 0

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Floor((Pi(C) + Exp(1))^(n*Exp(1))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    Floor[(Pi + E)^(E (Range[0, 20]))] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(floor((Pi+exp(1))^(n*exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset changed to 0 by Georg Fischer, Sep 02 2022

A121918 a(n) = ceiling((Pi+e)^(n*Pi)).

Original entry on oeis.org

1, 259, 66802, 17265409, 4462406596, 1153350806022, 298094324981779, 77045272021641917, 19913072619720776033, 5146720243221262934094, 1330218081751512472685764, 343807329988307215923432747, 88860226586342124489251555257, 22966758356328845813340839281382
Offset: 0

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Programs

  • Magma
    C := ComplexField(); [Ceiling((Pi(C) + Exp(1))^(n*Pi(C))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    With[{a = \[Pi] + E}, Ceiling[a^(\[Pi] Range[0, 20])]] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil((Pi+exp(1))^(n*Pi)), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset changed to 0 by Georg Fischer, Sep 02 2022
Showing 1-3 of 3 results.