cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121928 a(n) = ceiling(n*(e^Pi - Pi^e)).

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47, 48, 48, 49, 50, 50
Offset: 0

Views

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Ceiling(n*(Exp(1)^Pi(C) - Pi(C)^Exp(1) )): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    With[{a = E^Pi - Pi^E}, Ceiling[a Range[0, 80]]] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil(n*(exp(Pi) - Pi^exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
Offset changed to 0 by Georg Fischer, Sep 02 2022

A121925 a(n) = floor(n*(Pi^e + e^Pi)).

Original entry on oeis.org

0, 45, 91, 136, 182, 227, 273, 319, 364, 410, 455, 501, 547, 592, 638, 683, 729, 775, 820, 866, 911, 957, 1003, 1048, 1094, 1139, 1185, 1231, 1276, 1322, 1367, 1413, 1459, 1504, 1550, 1595, 1641, 1687, 1732, 1778, 1823, 1869, 1915, 1960, 2006, 2051, 2097
Offset: 0

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Floor(n*(Pi(C)^Exp(1) + Exp(1)^Pi(C))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    With[{a = Pi^E + E^Pi}, Floor[a * Range[0, 40]]] (* Vincenzo Librandi, Feb 20 2013 *)
  • PARI
    a(n)=floor(n*(Pi^exp(1)+exp(Pi))) \\ Charles R Greathouse IV, Feb 20 2013
    

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
Offset changed to 0 by Georg Fischer, Sep 02 2022
Showing 1-2 of 2 results.