cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121991 a(n) = 3*a(n-1) - a(n-2) - a(n-3) + 12.

Original entry on oeis.org

0, 1, 13, 50, 148, 393, 993, 2450, 5976, 14497, 35077, 84770, 204748, 494409, 1193721, 2882018, 6957936, 16798081, 40554301, 97906898, 236368324, 570643785, 1377656145, 3325956338, 8029569096, 19385094817
Offset: 0

Views

Author

Roger L. Bagula, Sep 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 3*a[n - 1] - a[n - 2] - a[n - 3] + 12, a[0] == 0, a[1] == 1, a[2] == 13}, a, {n,0,50}] (* or *) LinearRecurrence[{4,-4,0,1}, {0,1,13,50}, 50] (* G. C. Greubel, Sep 14 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(-x(1+9x+2x^2)/((1-x)^2*(x^2+2x-1))) ) \\ G. C. Greubel, Sep 14 2017

Formula

a(n) = ((11 - 7*sqrt(2))*(1 - sqrt(2))^n + (1 + sqrt(2))^n*(11 + 7*sqrt(2)) - 24*n - 22)/4.
O.g.f.: -x(1+9x+2x^2)/((1-x)^2*(x^2+2x-1)). - R. J. Mathar, Aug 22 2008
a(n) = -6(n+1)+(1+11*A000129(n+1)+3*A000129(n))/2. - R. J. Mathar, Aug 22 2008
E.g.f.: (1/2)*(11*cosh(sqrt(2)*x) + 7*sqrt(2)*sinh(sqrt(2)*x) - (12*x + 11))*exp(x). - G. C. Greubel, Sep 14 2017
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4). - Wesley Ivan Hurt, May 04 2024

Extensions

Edited by N. J. A. Sloane, Aug 24 2008, Dec 30 2008