cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A122055 A Somos 9-type recurrence: a(n) = (3*a(n-1)*a(n-8) - a(n-4)*a(n-5))/a(n-9), with a(0)=...=a(8)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 14, 41, 121, 353, 989, 2393, 9397, 49121, 342793, 2842633, 24619238, 211654405, 1731275594, 11581792513, 107195509553, 1126517154817, 16124559341513, 342648008481505, 8465982933121657, 213444061953471233
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Crossrefs

Cf. A122025.

Programs

  • GAP
    a:= function(n)
        if n<10 then return 1;
        else return (3*a(n-1)*a(n-8) - a(n-4)*a(n-5))/a(n-9);
        fi;
      end;
    List([0..35], n-> a(n) ); # G. C. Greubel, Oct 03 2019
  • Magma
    [n le 10 select 1 else (3*Self(n-1)*Self(n-8) - Self(n-4)*Self(n-5))/Self(n-9): n in [1..35]]; // G. C. Greubel, Oct 03 2019
    
  • Maple
    a:= proc (n) option remember;
       if n < 9 then 1
       else (3*a(n-1)*a(n-8) - a(n-4)*a(n-5))/a(n-9)
       fi;
    end proc;
    seq(a(n), n=0..35); # G. C. Greubel, Oct 03 2019
  • Mathematica
    a[n_]:= a[n]= If[n<9, 1, (3*a[n-1]*a[n-8] -a[n-4]*a[n-5])/a[n-9]];
    Table[a[n], {n, 0, 30}] (* modified by G. C. Greubel, Oct 03 2019 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_,h_,i_}]:={b,c,d,e,f,g,h,i,(3i*b-f*e)/a}; NestList[nxt,PadRight[{},9,1],30][[;;,1]] (* Harvey P. Dale, Jun 05 2024 *)
  • PARI
    m=35; v=concat([1,1,1,1,1,1,1,1,1], vector(m-9)); for(n=10, m, v[n] = (3*v[n-1]*v[n-8] - v[n-4]*v[n-5])/v[n-9] ); v \\ G. C. Greubel, Oct 03 2019
    
  • Sage
    def a(n):
        if n<10: return 1
        else: return (3*a(n-1)*a(n-8) - a(n-4)*a(n-5))/a(n-9)
    [a(n) for n in (0..35)] # G. C. Greubel, Oct 03 2019
    

Formula

a(n) = (3*a(n-1)*a(n-8) - a(n-4)*a(n-5))/a(n-9).

Extensions

Name edited and offset changed by G. C. Greubel, Oct 03 2019
Showing 1-1 of 1 results.