A122067 a(n) = 2^A014105(n).
1, 8, 1024, 2097152, 68719476736, 36028797018963968, 302231454903657293676544, 40564819207303340847894502572032, 87112285931760246646623899502532662132736, 2993155353253689176481146537402947624255349848014848
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
Programs
-
Maple
a:= n-> 2^(n*(2*n+1)): seq(a(n), n=0..10); # Alois P. Heinz, Feb 16 2020
-
Mathematica
Table[2^(Binomial[n, 2] - (n - 1)), {n, 2, 20, 2}] (* Geoffrey Critzer, Feb 16 2020 *)
-
PARI
a(n)=2^(n*(2*n+1))
Formula
a(n) = (-1)^floor(n/2)/Product_{i=1..2*n} cos(i*Pi/(2*n+1))^i.
Comments