cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122076 Coefficients of a generalized Jaco-Lucas polynomial (even indices) read by rows.

Original entry on oeis.org

2, 3, 2, 7, 8, 2, 18, 30, 15, 2, 47, 104, 80, 24, 2, 123, 340, 355, 170, 35, 2, 322, 1068, 1410, 932, 315, 48, 2, 843, 3262, 5208, 4396, 2079, 532, 63, 2, 2207, 9760, 18280, 18784, 11440, 4144, 840, 80, 2, 5778, 28746, 61785, 74838, 55809, 26226, 7602, 1260
Offset: 0

Views

Author

R. J. Mathar, Oct 16 2006

Keywords

Comments

Row sums give A052539. - Franck Maminirina Ramaharo, Jul 09 2018
Alternating row sums seem to be 1, except when n=0. - F. Chapoton, Nov 09 2021

Examples

			The triangle T(n,k) begins:
n\k:    0      1       2       3       4       5      6      7     8    9 10
0:      2
1:      3      2
2:      7      8       2
3:     18     30      15       2
4:     47    104      80      24       2
5:    123    340     355     170      35       2
6:    322   1068    1410     932     315      48      2
7:    843   3262    5208    4396    2079     532     63      2
8:   2207   9760   18280   18784   11440    4144    840     80     2
9:   5778  28746   61785   74838   55809   26226   7602   1260    99    2
10: 15127  83620  202840  282980  249815  144488  54690  13080  1815  120  2
... reformatted and extended. - _Franck Maminirina Ramaharo_, Jul 09 2018
		

Crossrefs

Cf. A200073.

Programs

  • GAP
    Concatenation([2],Flat(List([1..10],n->List([0..n],k->Sum([0..n],j->2*n*Binomial(2*n-j,j)*Binomial(j,k)/(2*n-j)))))); # Muniru A Asiru, Jul 27 2018
  • Mathematica
    T[n_, k_] := Sum[ 2n*Binomial[2n - j, j]*Binomial[j, k]/(2n - j), {j, 0, n}]; T[0, 0] = 2; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    t(n,k)={if(n>=1, sum(j=0,n/2, n*binomial(n-j,j)*binomial(j,k)/(n-j)), 2 );}
    T(n,k) = t(2*n, k);
    { nmax=10 ; for(n=0,nmax, for(k=0,n, print1(T(n,k),",") ; ); ); }
    

Formula

T(n,k) = Sum_(j=0..n) 2n*binomial(2n-j,j)*binomial(j,k)/(2n-j).
From Franck Maminirina Ramaharo, Jul 09 2018: (Start)
T(n,0) = A005248(n).
T(n,1) = A099920(2*n-1).
T(n,n-1) = A005563(n).
(End)

Extensions

Offset changed from 1 to 0 by Franck Maminirina Ramaharo, Jul 30 2018