A122082 Number of unlabeled bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged.
1, 2, 5, 16, 67, 404, 3904, 64840, 1930842, 104698904, 10401039400, 1900637187280, 641429385018832, 401454435464761376, 467919402404052870944, 1019758699013228238271040, 4171161230867751509749228304
Offset: 0
Keywords
References
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- F. Harary, L. March and R. W. Robinson, On enumerating certain design problems in terms of bicolored graphs with no isolates, Environment and Planning, B 5 (1978), 31-43.
- F. Harary, L. March and R. W. Robinson, On enumerating certain design problems in terms of bicolored graphs with no isolates, Environment and Planning B: Urban Analytics and City Science, 5 (1978), 31-43. [Annotated scanned copy]
Programs
-
Mathematica
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v + 1, 2] a[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
-
PARI
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]+1)\2)} a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 23 2017
Formula
Extensions
More terms from Vladeta Jovovic, Feb 27 2007