A122101 T(n,k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A000670(n-k+i).
1, 1, 0, 3, 2, 2, 13, 10, 8, 6, 75, 62, 52, 44, 38, 541, 466, 404, 352, 308, 270, 4683, 4142, 3676, 3272, 2920, 2612, 2342, 47293, 42610, 38468, 34792, 31520, 28600, 25988, 23646, 545835, 498542, 455932, 417464, 382672, 351152, 322552, 296564, 272918
Offset: 0
Examples
Triangle begins as: 1; 1, 0; 3, 2, 2; 13, 10, 8, 6; 75, 62, 52, 44, 38; 541, 466, 404, 352, 308, 270; 4683, 4142, 3676, 3272, 2920, 2612, 2342; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
A000670:= function(n) return Sum([0..n], i-> Factorial(i)*Stirling2(n,i) ); end; T:= function(n,k) return Sum([0..k], j-> (-1)^(k-j)*Binomial(k, j)*A000670(n-k+j) ); end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 02 2019
-
Magma
A000670:= func< n | &+[Factorial(k)*StirlingSecond(n,k): k in [0..n]] >; [(&+[(-1)^(k-j)*Binomial(k,j)*A000670(n-k+j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 02 2019
-
Maple
T:= (n, k)-> k!*(n-k)!*coeff(series(coeff(series(exp(-y)/ (2-exp(x+y)), y, k+1), y, k), x, n-k+1), x, n-k): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Oct 02 2019 # second Maple program: b:= proc(n) option remember; `if`(n<2, 1, add(b(n-j)*binomial(n, j), j=1..n)) end: T:= (n, k)-> add(binomial(k, j)*(-1)^j*b(n-j), j=0..k): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Oct 02 2019
-
Mathematica
A000670[n_]:= If[n==0,1,Sum[k! StirlingS2[n, k], {k, n}]]; T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[k, j]*A000670[n-k+j], {j,0,k}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 02 2019 *)
-
PARI
A000670(n) = sum(k=0,n, k!*stirling(n,k,2)); T(n,k) = sum(j=0,k, (-1)^(k-j)*binomial(k, j)*A000670(n-k+j)); for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 02 2019
-
Sage
def A000670(n): return sum(factorial(k)*stirling_number2(n,k) for k in (0..n)) def T(n,k): return sum((-1)^(k-j)*binomial(k, j)*A000670(n-k+j) for j in (0..k)) [[T(n,k) for k in (0..n)] for n in (0..10)]
Formula
Doubly-exponential generating function: Sum_{n, k} a(n-k,k) x^n/n! y^k/k! = exp(-y)/(2-exp(x+y)).