cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122133 Number of different polyominoes with maximum area of the convex hull.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 9, 26, 22, 53, 36, 93, 64, 151, 94, 228, 143, 329, 195, 455, 271, 611, 351, 798, 460, 1021, 574, 1281, 722, 1583, 876, 1928, 1069, 2321, 1269, 2763, 1513, 3259, 1765, 3810, 2066, 4421, 2376, 5093, 2740, 5831, 3114, 6636, 3547, 7513, 3991
Offset: 1

Views

Author

Sascha Kurz, Aug 21 2006

Keywords

Programs

  • Maple
    A122133 := proc(n)
        if modp(n,4)= 0 then
            (n^3-2*n^2+4*n)/16 ;
        elif modp(n,4)= 1 then
            (n^3-2*n^2+13*n+20)/32 ;
        elif modp(n,4)= 2 then
            (n^3-2*n^2+4*n+8)/16 ;
        else
            (n^3-2*n^2+5*n+8)/32 ;
        fi;
    end proc: # R. J. Mathar, May 19 2019
  • PARI
    Vec(x*(1+x-x^2+x^3+2*x^4+4*x^5+2*x^6+5*x^7+2*x^8+x^9)/((1-x)^4*(1+x)^4*(1+x^2)^2) + O(x^80)) \\ Colin Barker, Oct 14 2016

Formula

a(n) = (n^3 - 2*n^2 + 4*n)/16 if n mod 4 = 0;
a(n) = (n^3 - 2*n^2 + 13*n + 20)/32 if n mod 4 = 1;
a(n) = (n^3 - 2*n^2 + 4*n + 8)/16 if n mod 4 = 2;
a(n) = (n^3 - 2*n^2 + 5*n + 8)/32 if n mod 4 = 3.
G.f.: (1 + x - x^2 - x^3 + 2*x^5 + 8*x^6 + 2*x^7 + 4*x^8 + 2*x^9 - x^10 + x^12)/((1-x^2)^2*(1-x^4)^2).
From Luce ETIENNE, Aug 14 2019: (Start)
a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n) = 2*a(n-2) + a(n-4) - 4*a(n-6) + a(n-8) + 2*a(n-10) - a(n-12).
a(n) = (3*n^3 - 6*n^2 + 17*n + 22 + (n^3 - 2*n^2 - n - 6)*(-1)^n - 4*(4*cos(n*Pi/2) - (2*n+3)*sin(n*Pi/2)))/64. (End)
E.g.f.: (1/64)*(-exp(-x)*(6 - 2*x - x^2 + x^3) + exp(x)*(22 + 14*x + 3*x^2 + 3*x^3) - 4*(4*cos(x) - 2*x*cos(x) - 3*sin(x))). - Stefano Spezia, Aug 14 2019