A122180 Number of ways to write n as n = x*y*z with 1 < x < y < z < n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 1, 1
Offset: 1
Keywords
Examples
a(48) = 2 because 48 = 2*3*8 = 2*4*6, two products of three distinct proper factors of 48.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1001 terms from Antti Karttunen)
- Index entries for sequences computed from exponents in factorization of n
Programs
-
PARI
for(n=1,105, t=0; for(x=2,n-1, for(y=x+1,n-1, for(z=y+1,n-1, if(x*y*z==n, t++)))); print1(t,", "))
-
PARI
A122180(n) = { my(s=0); fordiv(n, x, if((x>1)&&(x
Antti Karttunen, Jul 08 2017 -
PARI
a(n) = { my(d = divisors(n)); if(#d <= 5, return(0)); my(res = 0, q); for(i = 2, #d, q = d[#d + 1 - i]; if(d[i]^2 > q, return(res) ); for(j = i + 1, #d, qj = q/d[j]; if(qj <= d[j], next(2) ); if(denominator(qj) == 1 && n % qj == 0, res++ ); ); ); res } \\ David A. Corneth, Oct 24 2024
Formula
a(n) = A200214(n)/6. - Antti Karttunen, Jul 08 2017
Comments