cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122180 Number of ways to write n as n = x*y*z with 1 < x < y < z < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2006

Keywords

Comments

x,y,z are distinct proper factors of n. See A122181 for n such that a(n) > 0.
If n has at most five divisors then a(n) = 0. - David A. Corneth, Oct 24 2024

Examples

			a(48) = 2 because 48 = 2*3*8 = 2*4*6, two products of three distinct proper factors of 48.
		

Crossrefs

Programs

  • PARI
    for(n=1,105, t=0; for(x=2,n-1, for(y=x+1,n-1, for(z=y+1,n-1, if(x*y*z==n, t++)))); print1(t,", "))
    
  • PARI
    A122180(n) = { my(s=0); fordiv(n, x, if((x>1)&&(xAntti Karttunen, Jul 08 2017
    
  • PARI
    a(n) = {
    	my(d = divisors(n));
    	if(#d <= 5, return(0));
    	my(res = 0, q);
    	for(i = 2, #d,
    		q = d[#d + 1 - i];
    		if(d[i]^2 > q,
    			return(res)
    		);
    		for(j = i + 1, #d,
    			qj = q/d[j];
    			if(qj <= d[j],
    				next(2)
    			);
    			if(denominator(qj) == 1 && n % qj == 0,
    				res++
    			);
    		);
    	);
    	res
    } \\ David A. Corneth, Oct 24 2024

Formula

a(n) = A200214(n)/6. - Antti Karttunen, Jul 08 2017