A122392 Dimension of 3-variable non-commutative harmonics (Hausdorff derivative). The dimension of the space of non-commutative polynomials in 3 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( w ) = sum over all subwords of w deleting xi once).
1, 2, 5, 15, 46, 139, 416, 1248, 3744, 11232, 33696, 101088, 303264, 909792, 2729376, 8188128, 24564384, 73693152, 221079456, 663238368, 1989715104, 5969145312, 17907435936, 53722307808, 161166923424, 483500770272, 1450502310816
Offset: 0
Examples
a(1) = 2 because x1 - x2, x2 - x3 are killed by d_x1 + d_x2 + d_x3 a(2) = 5 because x1 x2 - x2 x1, x1 x3 - x3 x1, x2 x3 - x3 x2, 2 x1 x2 - x2 x2 - 2 x1 x3 + x3 x3, x1 x1 - 2 x2 x1 + 2 x2 x3 - x3 x3 are killed by d_x1 + d_x2 + d_x3, d_x1^2 + d_x2^2 + d_x3^2 and d_x1 d_x2 + d_x1 d_x3 + d_x2 d_x3
References
- C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
- C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.
Links
- N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math.CO/0502082 , Canad. J. Math. 60 (2008), no. 2, 266-296.
Programs
-
Maple
coeffs(convert(series(mul(1-q^i,i=1..3)/(1-3*q),q,20),`+`)-O(q^20),q);
Formula
G.f.: (1-q)*(1-q^2)*(1-q^3)/(1-3*q) 3^n - 3^(n-1) - 3^(n-2) + 3^(n-4) + 3^(n-5) - 3^(n-6) (for n>5) a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 15, a(4) = 46, a(5) = 139, a(n) = 416*3^(n-6) for n>5
Comments