A122424 Primes p such that q = 4p^2 + 1 and r = 4q^2 + 1 are also prime.
3, 13, 47, 677, 983, 1013, 1163, 1373, 1567, 1877, 2003, 2333, 2477, 2753, 3463, 4057, 4423, 4993, 7253, 9833, 10993, 11383, 13907, 15413, 15607, 17317, 18517, 19867, 20123, 20533, 20693, 21937, 24517, 24967, 25633, 26293, 28547, 28867, 29063
Offset: 1
Links
- Pierre CAMI, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(30000) | IsPrime(q) and IsPrime(4*q^2+1) where q is 4*p^2+1]; // Vincenzo Librandi, Apr 09 2013
-
Maple
A122424:=n->`if`(isprime(n) and isprime(4*n^2+1) and isprime(4*(4*n^2+1)^2+1),n,NULL): seq(A122424(n), n=1..10^5); # Wesley Ivan Hurt, Aug 04 2014
-
Mathematica
Select[Prime[Range[3500]], PrimeQ[4 #^2 + 1] && PrimeQ[64 #^4 + 32 #^2 + 5]&] (* Vincenzo Librandi, Apr 09 2013 *)
-
PARI
f(x)=4*x^2+1; forprime(p=1,10^5,if(isprime(f(p))&&isprime(f(f(p))),print1(p,", "))) \\ Derek Orr, Jul 31 2014
Comments