A122429 Primes p such that q = 4p^2 + 1, r = 4q^2 + 1 and s = 4r^2 + 1 are all primes.
13, 9833, 41647, 151607, 264757, 356123, 361223, 446863, 449093, 457813, 531383, 641057, 655927, 841697, 855947, 899263, 913687, 1052813, 1081757, 1379383, 1506493, 1575757, 1685087, 1821013, 1821377, 1981517, 2054233, 2142037
Offset: 1
Keywords
Examples
13 is there because 13, 677, 1833317 and 13444204889957 are prime.
References
- Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, p.74.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..3636
Programs
-
Mathematica
Reap[Do[p=Prime[n];q=4p^2+1;r=4q^2+1;s=4r^2+1;If[PrimeQ[{q,r,s}]=={True, True,True},Sow[p]],{n,15000}]][[2,1]] Select[Prime[Range[200000]],AllTrue[NestList[4#^2+1&,#,3],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 22 2015 *)
-
PARI
f(x)=4*x^2+1; forprime(p=1, 10^8, if(isprime(f(p))&&isprime(f(f(p)))&&isprime(f(f(f(p)))), print1(p, ", "))) \\ Derek Orr, Jul 31 2014
Extensions
More terms from Don Reble, Oct 24 2006
Edited by R. J. Mathar, Nov 02 2009
Comments