cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122445 Pendular trinomial triangle, read by rows of 2n+1 terms (n>=0), defined by the recurrence: if 0 < k < n, T(n,k) = T(n-1,k) + 2*T(n,2n-1-k); otherwise, if n-1 < k < 2n-1, T(n,k) = T(n-1,k) + T(n,2n-2-k); with T(n,0) = T(n+1,2n) = 1 and T(n+1,2n+1) = T(n+1,2n+2) = 0.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 6, 10, 8, 3, 1, 0, 0, 1, 4, 10, 22, 36, 28, 12, 4, 1, 0, 0, 1, 5, 15, 39, 83, 135, 107, 47, 17, 5, 1, 0, 0, 1, 6, 21, 62, 155, 324, 525, 418, 189, 72, 23, 6, 1, 0, 0, 1, 7, 28, 92, 259, 629, 1298, 2094, 1676, 773, 305, 104, 30, 7, 1, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2006

Keywords

Comments

The diagonals may be generated by iterated convolutions of a base sequence B with the sequence C of central terms. The g.f. B(x) of the base sequence satisfies: B = 1 + x*B^2 + 2x^2*(B^2 - B); the g.f. C(x) of the central terms satisfies: C(x) = 1/(1+x - xB(x)).

Examples

			To obtain row 4, pendular sums of row 3 are carried out as follows.
  [1, 2, 3,  2, 1, 0, 0]: given row 3;
  [1, _, _, __, _, _, _]: start with T(4,0) = T(3,0) = 1;
  [1, _, _, __, _, _, 1]: T(4,6) = T(4,0) + 2*T(3,6) = 1 + 2*0 = 1;
  [1, 3, _, __, _, _, 1]: T(4,1) = T(4,6) + 1*T(3,1) = 1 + 1*2 = 3;
  [1, 3, _, __, _, 3, 1]: T(4,5) = T(4,1) + 2*T(3,5) = 3 + 2*0 = 3;
  [1, 3, 6, __, _, 3, 1]: T(4,2) = T(4,5) + 1*T(3,2) = 3 + 1*3 = 6;
  [1, 3, 6, __, 8, 3, 1]: T(4,4) = T(4,2) + 2*T(3,4) = 6 + 2*1 = 8;
  [1, 3, 6, 10, 8, 3, 1]: T(4,3) = T(4,4) + 1*T(3,3) = 8 + 1*2 = 10;
  [1, 3, 6, 10, 8, 3, 1,0,0]: complete row 4 by appending two zeros.
Triangle begins:
  1;
  1, 0,  0;
  1, 1,  1,  0,   0;
  1, 2,  3,  2,   1,   0,   0;
  1, 3,  6, 10,   8,   3,   1,   0,   0;
  1, 4, 10, 22,  36,  28,  12,   4,   1,  0,  0;
  1, 5, 15, 39,  83, 135, 107,  47,  17,  5,  1, 0, 0;
  1, 6, 21, 62, 155, 324, 525, 418, 189, 72, 23, 6, 1, 0, 0;
Central terms are:
  C = A122447 = [1, 0, 1, 2, 8, 28, 107, 418, 1676, 6848, ...].
Lower diagonals start:
  D1 = A122448 = [1, 1, 3, 10, 36, 135, 525, 2094, 8524, ...];
  D2 = A122449 = [1, 2, 6, 22, 83, 324, 1298, 5302, 22002, ...].
Diagonals above central terms (ignoring leading zeros) start:
  U1 = A122450 = [1, 3, 12, 47, 189, 773, 3208, 13478, 57222, ...];
  U2 = A122451 = [1, 4, 17, 72, 305, 1300, 5576, 24068, 104510, ...].
There exists the base sequence:
  B = A122446 = [1, 1, 2, 7, 24, 88, 336, 1321, 5316, 21788, ...]
which generates all diagonals by convolutions with central terms:
  D2 = B * D1 = B^2 * C
  U2 = B * U1 = B^2 * C"
where C" = [1, 2, 8, 28, 107, 418, 1676, 6848, 28418, ...]
are central terms not including the initial [1,0].
		

Crossrefs

Cf. A122446, A122447 (central terms), A122452 (row sums).

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k<0 or k>2*(n-1) then 0
        elif n=2 and k<3 then 1
        else T(n-1, k) + `if`(kG. C. Greubel, Mar 16 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k<0 || k>2*(n-1), 0, If[n==2 && k<3, 1, T[n-1, k] + If[kG. C. Greubel, Mar 16 2021 *)
  • PARI
    {T(n,k)= if(k==0 && n==0, 1, if(k>2*n-2 || k<0, 0, if(n==2 && k<=2, 1, if(k
    				
  • Sage
    @CachedFunction
    def T(n, k):
        if (n==0 and k==0): return 1
        elif (k<0 or k>2*(n-1)): return 0
        elif (n==2 and k<3): return 1
        else: return T(n-1, k) + ( T(n, 2*n-k-1) if kG. C. Greubel, Mar 16 2021