A122450 Diagonal above central terms of pendular trinomial triangle A122445, ignoring leading zeros.
1, 3, 12, 47, 189, 773, 3208, 13478, 57222, 245134, 1058348, 4600571, 20118753, 88450897, 390721560, 1733348234, 7719287578, 34497374034, 154659735720, 695397289078, 3135087583426, 14168892518258, 64181607367952
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); f:= func< x | Sqrt(1-4*x-4*x^2+4*x^4) >; Coefficients(R!( 2*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))*(1-x+2*x^2+2*x^3+(1+x)*f(x))) )); // G. C. Greubel, Mar 17 2021 -
Mathematica
f[x_]:= Sqrt[1-4*x-4*x^2+4*x^4]; CoefficientList[Series[2*(1-2*x^2-f[x])/(x*(1+2*x^2+f[x])*(1-x+2*x^2+2*x^3+(1+x)*f[x])), {x,0,30}], x] (* G. C. Greubel, Mar 17 2021 *)
-
PARI
{a(n)=local(A,B=2/(1+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x^2*O(x^n)))); A=B*(B-1)/x/(1+x-x*B);polcoeff(A,n,x)}
-
Sage
def f(x): return sqrt(1-4*x-4*x^2+4*x^4) def A122449_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( 2*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))*(1-x+2*x^2+2*x^3+(1+x)*f(x))) ).list() A122449_list(30) # G. C. Greubel, Mar 17 2021
Formula
G.f.: A(x) = B(x)*(B(x)-1)/(x*(1+x -x*B(x))) where B(x) is the g.f. of A122446.
G.f.: 2*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))*(1-x+2*x^2+2*x^3+(1+x)*f(x))), where f(x) = sqrt(1 -4*x -4*x^2 +4*x^4). - G. C. Greubel, Mar 17 2021