A122463 a(n) is the smallest integer such that all its prime factors are <= its n-th root, and such that the equivalent limitation holds also for a(n)-1.
3, 9, 2401, 2401, 5909761, 1611308700, 421138799640, 2286831727304145, 3948741978036988496
Offset: 1
Examples
For n=7, a(7)= 421138799640 = 2^3*3^5*5*13^4*37*41 and a(7)-1 =421138799639 = 17*19*23^2*31*43^3 are solutions because 41 <= floor(421138799640^(1/7)) = 45 and 43 <= floor(421138799639^(1/7)) = 45.
Links
- Fred Schneider and R. Gerbicz, Smooth Power Trios.
Programs
-
PARI
isok1(k, n) = {r = floor(sqrtn(k, n)); f = factor(k); for (j=1, #f~, if (f[j, 1] > r, return (0));); return (1);} a(n) = {i = 3; found = 0; while (! found, found = (isok1(i, n) && isok1(i-1, n)); if (! found, i++);); return (i);} \\ Michel Marcus, Jul 12 2013
Extensions
Edited by R. J. Mathar, Sep 02 2009
Comments