A122486 a(n) = Sum_{k=0..n} |Stirling1(n,k)|*Bell(k)^2.
1, 1, 5, 39, 425, 6053, 107735, 2321469, 59152987, 1750362419, 59286010621, 2271617296347, 97502863649141, 4649359584613201, 244550369307356039, 14101227268075911837, 886551391533830227267, 60482082002935189216499
Offset: 0
Programs
-
Maple
with(combinat): seq(sum(abs(stirling1(n,k))*bell(k)^2,k=0..n),n=0..19); # Emeric Deutsch, Oct 08 2006
Formula
a(n) = exp(-2)*Sum_{r,s>=0} [r*s]^n/(r!*s!), where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial.
E.g.f.: Sum_{n>=0} exp( 1/(1-x)^n - 2 ) / n!. - Paul D. Hanna, Jul 25 2018
Extensions
More terms from Emeric Deutsch, Oct 08 2006
Comments