cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122513 Numbers n such that 1+2n+3n^2 is a triangular number.

Original entry on oeis.org

0, 1, 46, 135, 4540, 13261, 444906, 1299475, 43596280, 127335321, 4271990566, 12477562015, 418611479220, 1222673742181, 41019652973026, 119809549171755, 4019507379877360, 11740113145089841, 393870703575008286, 1150411278669632695, 38595309442970934700
Offset: 1

Views

Author

Zak Seidov, Oct 20 2006

Keywords

Comments

The y solution to the generalized Pell equation x^2 + x = 2 + 4*y + 6*y^2. - T. D. Noe, Apr 28 2011
Also numbers n such that the sum of the pentagonal numbers P(n) and P(n+1) is equal to a hexagonal number. - Colin Barker, Dec 15 2014
Also numbers n such that the sum of the pentagonal numbers P(n) and P(n+1) is equal to a triangular number. - Colin Barker, Dec 15 2014

Examples

			Corresponding values of triangular numbers tri = m(m+1)/2 and m's are
tri = 1, 6, 6441, 54946, 61843881, 527588886, 593824936321
m = 1, 3, 113, 331, 11121, 32483, 1089793.
		

Crossrefs

Cf. A000217 (triangular numbers), A086285 (numbers n such that 1+2n+3n^2 is prime).

Programs

  • Maple
    ivs:=[0,1,46,135,4540]:
    rec:= a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5):
    f:= gfun:-rectoproc({rec, seq(a(i)=ivs[i],i=1..5)},a(n),remember):
    seq(f(n),n=1..100); # Robert Israel, Dec 15 2014
  • Mathematica
    triQ[n_] := IntegerQ[ Sqrt[8n + 1]]; lst = {}; Do[ If[ triQ[1 + 2n + 3n^2], AppendTo[lst, n]; Print@n], {n, 0, 65000000}] (* Robert G. Wilson v, Jan 08 2007 *)
    LinearRecurrence[{1, 98, -98, -1, 1}, {1, 46, 135, 4540, 13261}, 30] (* T. D. Noe, Apr 28 2011 *)
  • PARI
    concat(0, Vec(x^2*(5*x^3+9*x^2-45*x-1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))) \\ Colin Barker, Dec 15 2014

Formula

a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5). - Colin Barker, Dec 15 2014
G.f.: x^2*(5*x^3+9*x^2-45*x-1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)). - Colin Barker, Dec 15 2014
a(n) = (-(5/8)*sqrt(6)-3/2)*(5-2*sqrt(6))^n+(-3/2+(5/8)*sqrt(6))*(5+2*sqrt(6))^n-1/3+(-(1/3)*sqrt(6)-5/6)*(-5+2*sqrt(6))^n+((1/3)*sqrt(6)-5/6)*(-5-2*sqrt(6))^n. - Robert Israel, Dec 15 2014

Extensions

a(8) and a(9) from Robert G. Wilson v, Jan 08 2007
a(10) and a(11) from Donovan Johnson, Apr 28 2011
Extended by T. D. Noe, Apr 28 2011