A122513 Numbers n such that 1+2n+3n^2 is a triangular number.
0, 1, 46, 135, 4540, 13261, 444906, 1299475, 43596280, 127335321, 4271990566, 12477562015, 418611479220, 1222673742181, 41019652973026, 119809549171755, 4019507379877360, 11740113145089841, 393870703575008286, 1150411278669632695, 38595309442970934700
Offset: 1
Examples
Corresponding values of triangular numbers tri = m(m+1)/2 and m's are tri = 1, 6, 6441, 54946, 61843881, 527588886, 593824936321 m = 1, 3, 113, 331, 11121, 32483, 1089793.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,98,-98,-1,1).
Crossrefs
Programs
-
Maple
ivs:=[0,1,46,135,4540]: rec:= a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5): f:= gfun:-rectoproc({rec, seq(a(i)=ivs[i],i=1..5)},a(n),remember): seq(f(n),n=1..100); # Robert Israel, Dec 15 2014
-
Mathematica
triQ[n_] := IntegerQ[ Sqrt[8n + 1]]; lst = {}; Do[ If[ triQ[1 + 2n + 3n^2], AppendTo[lst, n]; Print@n], {n, 0, 65000000}] (* Robert G. Wilson v, Jan 08 2007 *) LinearRecurrence[{1, 98, -98, -1, 1}, {1, 46, 135, 4540, 13261}, 30] (* T. D. Noe, Apr 28 2011 *)
-
PARI
concat(0, Vec(x^2*(5*x^3+9*x^2-45*x-1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))) \\ Colin Barker, Dec 15 2014
Formula
a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5). - Colin Barker, Dec 15 2014
G.f.: x^2*(5*x^3+9*x^2-45*x-1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)). - Colin Barker, Dec 15 2014
a(n) = (-(5/8)*sqrt(6)-3/2)*(5-2*sqrt(6))^n+(-3/2+(5/8)*sqrt(6))*(5+2*sqrt(6))^n-1/3+(-(1/3)*sqrt(6)-5/6)*(-5+2*sqrt(6))^n+((1/3)*sqrt(6)-5/6)*(-5-2*sqrt(6))^n. - Robert Israel, Dec 15 2014
Extensions
a(8) and a(9) from Robert G. Wilson v, Jan 08 2007
a(10) and a(11) from Donovan Johnson, Apr 28 2011
Extended by T. D. Noe, Apr 28 2011
Comments