A122571 a(n) = 14*a(n-1) - a(n-2), with a(1) = a(2) = 1.
1, 1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621, 5057016404808970637113
Offset: 1
References
- Henry MacKean and Victor Moll, Elliptic Curves, Cambridge University Press, New York, 1997, page 22.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..870
- Gareth Jones and David Singerman, Belyi Functions, Hypermaps and Galois Groups, Bull. London Math. Soc., 28 (1996), 561-590.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
Crossrefs
Cf. A001570 (essentially the same).
Programs
-
Magma
[n le 2 select 1 else 14*Self(n-1) -Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 29 2024
-
Mathematica
LinearRecurrence[{14, -1}, {1, 1}, 25] (* Paolo Xausa, Jan 29 2024 *)
-
SageMath
A122571=BinaryRecurrenceSequence(14,-1,1,1) [A122571(n-1) for n in range(1,41)] # G. C. Greubel, Oct 29 2024
Formula
G.f.: x*(1-13*x)/(1-14*x+x^2). - Philippe Deléham, Nov 17 2008
a(n+1) = A001570(n). - Ctibor O. Zizka, Feb 26 2010
a(n) = (1/4)*sqrt( 2 + (2-sqrt(3))^(4*n-6) + (2+sqrt(3))^(4*n-6) ). - Gerry Martens, Jun 03 2015
From G. C. Greubel, Oct 29 2024: (Start)
a(n) = (1/4)*( (2 + sqrt(3))^(2*n-3) + (2 - sqrt(3))^(2*n-3) ).
E.g.f.: -13 + exp(7*x)*( 13*cosh(4*sqrt(3)*x) - (15*sqrt(3)/2)*sinh(4*sqrt(3)*x) ). (End)
Extensions
Edited by N. J. A. Sloane, Sep 21 2006 and Dec 04 2006
a(19)-a(21) from Paolo Xausa, Jan 29 2024
Comments