A122600 Expansion of 1/(1 + 3*x - 4*x^2 + x^3).
1, -3, 13, -52, 211, -854, 3458, -14001, 56689, -229529, 929344, -3762837, 15235416, -61686940, 249765321, -1011279139, 4094585641, -16578638800, 67125538103, -271785755150, 1100438056662, -4455582728689, 18040286167865, -73043627475013, 295747609825188, -1197457625543481
Offset: 0
Links
- Toufik Mansour and Mark Shattuck, Avoidance of vincular patterns by flattened derangements, arXiv:2504.14713 [math.CO], 2025. See p. 6.
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Index entries for linear recurrences with constant coefficients, signature (-3,4,-1).
Crossrefs
Cf. A065941.
Programs
-
Mathematica
p[x_] := 1 - 4 x + 3x^2 + x^3; q[x_] := ExpandAll[x^3*p[1/x]]; Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] CoefficientList[Series[1/(1 + 3*x - 4*x^2 + x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{-3, 4, -1}, {1, -3, 13}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
Formula
a(n)= -3*a(n-1) + 4*a(n-2) - a(n-3), n>=2, a(-1):=0, a(1)=0, a(1)=-3 (from the o.g.f. given in the name).
a(n) = (-1)^n*Sum_{k=0..n} binomial(n+k+2,3*k+2)*7^k. - Emanuele Munarini, Aug 27 2017
From Kai Wang, Jul 05 2020: (Start)
a(n) = Sum_{i+2j+3k=n} (-1)^(i+k)*3^i*4^j*((i+j+k)!)/(i!*j!*k!).
Extensions
Edited by N. J. A. Sloane, Feb 01 2007
Comments