cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122670 If n mod 4 = 2 or n mod 4 = 3 then a(n) = 0 else let m=floor(n/4), then a(n) = (2*m)!/m!.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 12, 12, 0, 0, 120, 120, 0, 0, 1680, 1680, 0, 0, 30240, 30240, 0, 0, 665280, 665280, 0, 0, 17297280, 17297280, 0, 0, 518918400, 518918400, 0, 0, 17643225600, 17643225600, 0, 0, 670442572800, 670442572800, 0, 0, 28158588057600, 28158588057600, 0, 0, 1295295050649600
Offset: 0

Views

Author

N. J. A. Sloane, Sep 23 2006

Keywords

Comments

Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).
A037224 is an essentially identical sequence.

References

  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).

Crossrefs

If the duplicates and zeros are omitted we get A001813.

Programs

  • Maple
    R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end;
    For Maple program see A000903.
  • Mathematica
    Table[If[MemberQ[{2,3},Mod[n,4]],0,((2Floor[n/4])!/Floor[n/4]!)],{n,0,50}] (* Harvey P. Dale, Dec 30 2023 *)

Formula

For asymptotics see the Robinson paper.
a(n) = (1/2 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2) * ((n/2 - 3/4 + (-1)^n/4 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2)! / ((n/4 - 3/8 + (-1)^n/8 + (-1)^(n/2 - 1/4 + (-1)^n/4)/4)!)). - Wesley Ivan Hurt, Mar 30 2015