cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122729 Primes that are the sum of 5 positive cubes.

Original entry on oeis.org

5, 19, 31, 59, 71, 83, 89, 97, 101, 109, 127, 131, 157, 181, 199, 227, 233, 241, 251, 257, 269, 281, 283, 293, 307, 331, 347, 349, 353, 373, 379, 409, 421, 431, 433, 443, 449, 461, 487, 499, 503, 523, 541, 557, 563, 569, 587, 593, 599, 601, 619, 631, 647, 661
Offset: 1

Views

Author

Jonathan Vos Post, Sep 23 2006

Keywords

Comments

By parity, there must be an odd number of odds in the sum. Hence this sequence is the union of primes which are the sum of five odd cubes (such as 5 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3); primes which are the sum of the cube of two even numbers and the cubes of three odd numbers (such as 19 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3); and the primes which are the sum of the cube of an odd number and the cubes of four even numbers (such as 59 = 3^3 + 2^3 + 2^3 + 2^3 + 2^3). A subset of this sequence is the primes which are the sum of the cubes of five distinct primes (i.e. of the form p^3 + q^3 + r^3 + s^3 + t^3 for p, q, r, s, t distinct odd primes) such as 105649 = 3^3 + 5^3 + 7^3 + 11^3 + 47^3. No prime can be the sum of two cubes (by factorization of the sum of two cubes).

Examples

			a(1) =  5 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3.
a(2) = 19 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3.
a(3) = 31 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3.
a(4) = 59 = 3^3 + 2^3 + 2^3 + 2^3 + 2^3.
		

Crossrefs

Programs

  • Mathematica
    q = 10; lst = {}; Do[Do[Do[Do[Do[p = a^3 + b^3 + c^3 + d^3 + e^3; If[PrimeQ[p], AppendTo[lst, p]], {e, q}], {d, q}], {c, q}], {b, q}], {a, q}]; Take[Union[lst], 80] (* Vladimir Joseph Stephan Orlovsky, Jul 15 2011 *)
    With[{upto=650},Union[Select[Total/@Tuples[Range[Surd[upto-4,3]]^3,5], PrimeQ[ #]&&#<=upto&]]] (* Harvey P. Dale, Sep 30 2018 *)
  • PARI
    list(lim)=my(ta,tb,tc,td,te,v=List());for(a=1,(lim/5)^(1/3),ta=a^3;for(b=a,((lim-ta)/4)^(1/3),tb=ta+b^3;for(c=b,((lim-tb)/3)^(1/3),tc=tb+c^3;for(d=c,((lim-tc)/2)^(1/3),td=tc+d^3;forstep(e=if(td%2==d%2,d+1,d),(lim-td)^(1/3),2,te=td+e^3;if(ispseudoprime(te),listput(v,te)))))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jul 15 2011
    
  • Python
    from sympy import isprime
    from collections import Counter
    from itertools import combinations_with_replacement as combs_w_rep
    def aupto(lim):
      s = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
      s2 = filter(lambda x: x<=lim, (sum(c) for c in combs_w_rep(s, 5)))
      s2counts = Counter(s2)
      return sorted(filter(isprime, s2counts))
    print(aupto(661)) # Michael S. Branicky, May 19 2021

Formula

A000040 INTERSECTION A003328.