A122753 Triangle of coefficients of (1 - x)^n*B_n(x/(1 - x)), where B_n(x) is the n-th Bell polynomial.
1, 0, 1, 0, 1, 0, 1, 1, -1, 0, 1, 4, -5, 1, 0, 1, 11, -14, 1, 2, 0, 1, 26, -24, -29, 36, -9, 0, 1, 57, 1, -244, 281, -104, 9, 0, 1, 120, 225, -1259, 1401, -454, -83, 50, 0, 1, 247, 1268, -5081, 4621, 911, -3422, 1723, -267, 0, 1, 502, 5278, -16981, 5335, 30871
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1; 0, 1, 1, -1; 0, 1, 4, -5, 1; 0, 1, 11, -14, 1, 2; 0, 1, 26, -24, -29, 36, -9; 0, 1, 57, 1, -244, 281, -104, 9; 0, 1, 120, 225, -1259, 1401, -454, -83, 50; 0, 1, 247, 1268, -5081, 4621, 911, -3422, 1723, -267; ... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 10 2018
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 824-825.
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
- Eric Weisstein's World of Mathematics, Bell Polynomial
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind
Crossrefs
Programs
-
Mathematica
Table[CoefficientList[Sum[StirlingS2[m, n]*x^n*(1-x)^(m-n), {n,0,m}], x], {m,0,10}]//Flatten
-
Maxima
P(x, n) := expand(sum(stirling2(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$ T(n, k) := ratcoef(P(x, n), x, k)$ tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
-
Sage
def p(n,x): return sum( stirling_number2(n, j)*x^j*(1-x)^(n-j) for j in (0..n) ) def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False) flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
Formula
From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
E.g.f.: exp((x/(1 - x))*(exp((1 - x)*y) - 1)).
T(n,1) = A000295(n-1). (End)
Extensions
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 10 2018
Comments